Skip to main content

Neurological Diseases from a Systems Medicine Point of View

  • Protocol
Systems Medicine

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1386))

Abstract

The difficulty to understand, diagnose, and treat neurological disorders stems from the great complexity of the central nervous system on different levels of physiological granularity. The individual components, their interactions, and dynamics involved in brain development and function can be represented as molecular, cellular, or functional networks, where diseases are perturbations of networks. These networks can become a useful research tool in investigating neurological disorders if they are properly tailored to reflect corresponding mechanisms. Here, we review approaches to construct networks specific for neurological disorders describing disease-related pathology on different scales: the molecular, cellular, and brain level. We also briefly discuss cross-scale network analysis as a necessary integrator of these scales.

If you look at the anatomy, the structure, the function, there's nothing in the universe that’s more beautiful, that’s more complex, than the human brain. Keith Black

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Parker MH, Seale P, Rudnicki MA (2003) Looking back to the embryo: defining transcriptional networks in adult myogenesis. Nat Rev Genet 4:497–507. doi:10.1038/nrg1109

    Article  CAS  PubMed  Google Scholar 

  2. Drake CJ (2003) Embryonic and adult vasculogenesis. Birth Defects Res C Embryo Today 69:73–82. doi:10.1002/bdrc.10003

    Article  CAS  PubMed  Google Scholar 

  3. Urbán N, Guillemot F (2014) Neurogenesis in the embryonic and adult brain: same regulators, different roles. Front Cell Neurosci. doi:10.3389/fncel.2014.00396

    PubMed Central  PubMed  Google Scholar 

  4. Sharan R, Ideker T (2006) Modeling cellular machinery through biological network comparison. Nat Biotechnol 24:427–433. doi:10.1038/nbt1196

    Article  CAS  PubMed  Google Scholar 

  5. Edelman LB, Chandrasekaran S, Price ND (2010) Systems biology of embryogenesis. Reprod Fertil Dev 22:98–105. doi:10.1071/RD09215

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Stiles J, Jernigan TL (2010) The basics of brain development. Neuropsychol Rev 20:327–348. doi:10.1007/s11065-010-9148-4

    Article  PubMed Central  PubMed  Google Scholar 

  7. Kintner C (2002) Neurogenesis in embryos and in adult neural stem cells. J Neurosci 22:639–643

    CAS  PubMed  Google Scholar 

  8. Gilbert SF (2000) Developmental biology, 6th edn. Sinauer Associates, Sunderland, MA

    Google Scholar 

  9. Sporns O, Tononi G, Kötter R (2005) The human connectome: a structural description of the human brain. PLoS Comput Biol 1:e42. doi:10.1371/journal.pcbi.0010042

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  10. Spitzer NC (2006) Electrical activity in early neuronal development. Nature 444:707–712. doi:10.1038/nature05300

    Article  CAS  PubMed  Google Scholar 

  11. Rhinn M, Brand M (2001) The midbrain--hindbrain boundary organizer. Curr Opin Neurobiol 11:34–42

    Article  CAS  PubMed  Google Scholar 

  12. Joyner AL (1996) Engrailed, Wnt and Pax genes regulate midbrain--hindbrain development. Trends Genet 12:15–20

    Article  CAS  PubMed  Google Scholar 

  13. Bozzi Y, Casarosa S, Caleo M (2012) Epilepsy as a neurodevelopmental disorder. Front Psychiatry 3:19. doi:10.3389/fpsyt.2012.00019

    Article  PubMed Central  PubMed  Google Scholar 

  14. Nissim-Eliraz E, Zisman S, Schatz O, Ben-Arie N (2013) Nato3 integrates with the Shh-Foxa2 transcriptional network regulating the differentiation of midbrain dopaminergic neurons. J Mol Neurosci 51:13–27. doi:10.1007/s12031-012-9939-6

    Article  CAS  PubMed  Google Scholar 

  15. Rogers D, Schor NF (2010) The child is father to the man: developmental roles for proteins of importance for neurodegenerative disease. Ann Neurol 67:151–158. doi:10.1002/ana.21841

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Kolodkin A, Simeonidis E, Balling R, Westerhoff HV (2012) Understanding complexity in neurodegenerative diseases: in silico reconstruction of emergence. Front Physiol 3:291. doi:10.3389/fphys.2012.00291

    Article  PubMed Central  PubMed  Google Scholar 

  17. Thiele I, Palsson BØ (2010) A protocol for generating a high-quality genome-scale metabolic reconstruction. Nat Protoc 5:93–121

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Head MW (2013) Human prion diseases: molecular, cellular and population biology. Neuropathology 33:221–236. doi:10.1111/neup.12016

    Article  CAS  PubMed  Google Scholar 

  19. Tycko R, Wickner RB (2013) Molecular structures of amyloid and prion fibrils: consensus versus controversy. Acc Chem Res 46:1487–1496. doi:10.1021/ar300282r

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Ortega Z, Lucas JJ (2014) Ubiquitin-proteasome system involvement in Huntington’s disease. Front Mol Neurosci 7:77. doi:10.3389/fnmol.2014.00077

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  21. Nacmias B, Piaceri I, Bagnoli S et al (2014) Genetics of Alzheimer’s disease and frontotemporal dementia. Curr Mol Med 14:993–1000

    Google Scholar 

  22. Petrucci S, Consoli F, Valente EM (2014) Parkinson disease genetics: a “Continuum” from mendelian to multifactorial inheritance. Curr Mol Med 14:1079–1088

    Google Scholar 

  23. Lignani G, Raimondi A, Ferrea E et al (2013) Epileptogenic Q555X SYN1 mutant triggers imbalances in release dynamics and short-term plasticity. Hum Mol Genet 22:2186–2199. doi:10.1093/hmg/ddt071

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Oliva M, Berkovic SF, Petrou S (2012) Sodium channels and the neurobiology of epilepsy. Epilepsia 53:1849–1859. doi:10.1111/j.1528-1167.2012.03631.x

    Article  CAS  PubMed  Google Scholar 

  25. Margineanu DG (2013) Systems biology, complexity, and the impact on antiepileptic drug discovery. Epilepsy Behav. doi:10.1016/j.yebeh.2013.08.029

    PubMed  Google Scholar 

  26. Cui S, Sun H, Gu X et al (2014) Gene expression profiling analysis of locus coeruleus in idiopathic Parkinson’s disease by bioinformatics. Neurol Sci. doi:10.1007/s10072-014-1889-z

    Google Scholar 

  27. Winden KD, Karsten SL, Bragin A et al (2011) A systems level, functional genomics analysis of chronic epilepsy. PLoS One 6:e20763. doi:10.1371/journal.pone.0020763

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Tauber E, Miller-Fleming L, Mason RP et al (2011) Functional gene expression profiling in yeast implicates translational dysfunction in mutant huntingtin toxicity. J Biol Chem 286:410–419. doi:10.1074/jbc.M110.101527

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Hwang D, Lee IY, Yoo H et al (2009) A systems approach to prion disease. Mol Syst Biol 5:252. doi:10.1038/msb.2009.10

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  30. Marbiah MM, Harvey A, West BT et al (2014) Identification of a gene regulatory network associated with prion replication. EMBO J 33:1527–1547. doi:10.15252/embj.201387150

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Manogaran AL, Hong JY, Hufana J et al (2011) Prion formation and polyglutamine aggregation are controlled by two classes of genes. PLoS Genet 7:e1001386. doi:10.1371/journal.pgen.1001386

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Tourette C, Li B, Bell R et al (2014) A large scale Huntingtin protein interaction network implicates Rho GTPase signaling pathways in Huntington disease. J Biol Chem 289:6709–6726. doi:10.1074/jbc.M113.523696

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Rakshit H, Rathi N, Roy D (2014) Construction and analysis of the protein-protein interaction networks based on gene expression profiles of Parkinson’s disease. PLoS One 9:e103047. doi:10.1371/journal.pone.0103047

    Article  PubMed Central  PubMed  Google Scholar 

  34. Dusonchet J, Li H, Guillily M et al (2014) A Parkinson’s disease gene regulatory network identifies the signaling protein RGS2 as a modulator of LRRK2 activity and neuronal toxicity. Hum Mol Genet 23:4887–4905. doi:10.1093/hmg/ddu202

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Chandrasekaran S, Bonchev D (2013) A network view on Parkinson’s disease. Comput Struct Biotechnol J 7:e201304004. doi:10.5936/csbj.201304004

    Article  PubMed Central  PubMed  Google Scholar 

  36. Armananzas R, Larranaga P, Bielza C (2012) Ensemble transcript interaction networks: a case study on Alzheimer’s disease. Comput Methods Programs Biomed 108:442–450. doi:10.1016/j.cmpb.2011.11.011

    Article  PubMed  Google Scholar 

  37. Liu Z-P, Wang Y, Zhang X-S et al (2011) Detecting and analyzing differentially activated pathways in brain regions of Alzheimer’s disease patients. Mol Biosyst 7:1441–1452. doi:10.1039/c0mb00325e

    Article  CAS  PubMed  Google Scholar 

  38. Bando SY, Alegro MC, Amaro EJ et al (2011) Hippocampal CA3 transcriptome signature correlates with initial precipitating injury in refractory mesial temporal lobe epilepsy. PLoS One 6:e26268. doi:10.1371/journal.pone.0026268

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Kanehisa M, Limviphuvadh V, Tanabe M (2010) Chapter 9 knowledge-based analysis of protein interaction networks in neurodegenerative diseases. In: Alzate O (ed) Neuroproteomics. CRC Press, Boca Raton, pp 1–17

    Google Scholar 

  40. Sertbas M, Ulgen K, Cakir T (2014) Systematic analysis of transcription-level effects of neurodegenerative diseases on human brain metabolism by a newly reconstructed brain-specific metabolic network. FEBS Open Bio 4:542–553. doi:10.1016/j.fob.2014.05.006

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Crespo I, Roomp K, Jurkowski W et al (2012) Gene regulatory network analysis supports inflammation as a key neurodegeneration process in prion disease. BMC Syst Biol 6:132. doi:10.1186/1752-0509-6-132

    Article  PubMed Central  PubMed  Google Scholar 

  42. Mayburd A, Baranova A (2013) Knowledge-based compact disease models identify new molecular players contributing to early-stage Alzheimer’s disease. BMC Syst Biol 7:121. doi:10.1186/1752-0509-7-121

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  43. Lee SM, Chung M, Hwang KJ et al (2014) Biological network inferences for a protection mechanism against familial Creutzfeldt-Jakob disease with E200K pathogenic mutation. BMC Med Genomics 7:52. doi:10.1186/1755-8794-7-52

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  44. Bakir-Gungor B, Baykan B, Ugur Iseri S et al (2013) Identifying SNP targeted pathways in partial epilepsies with genome-wide association study data. Epilepsy Res 105:92–102. doi:10.1016/j.eplepsyres.2013.02.008

    Article  CAS  PubMed  Google Scholar 

  45. Edwards YJK, Beecham GW, Scott WK et al (2011) Identifying consensus disease pathways in Parkinson’s disease using an integrative systems biology approach. PLoS One 6:e16917. doi:10.1371/journal.pone.0016917

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. Ogishima S, Mizuno S, Kikuchi M et al (2013) A map of Alzheimer’s disease-signaling pathways: a hope for drug target discovery. Clin Pharmacol Ther 93:399–401. doi:10.1038/clpt.2013.37

    Article  CAS  PubMed  Google Scholar 

  47. Fujita KA, Ostaszewski M, Matsuoka Y et al (2014) Integrating pathways of Parkinson’s disease in a molecular interaction map. Mol Neurobiol 49:88–102. doi:10.1007/s12035-013-8489-4

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. Ouzounoglou E, Kalamatianos D, Emmanouilidou E et al (2014) In silico modeling of the effects of alpha-synuclein oligomerization on dopaminergic neuronal homeostasis. BMC Syst Biol 8:54. doi:10.1186/1752-0509-8-54

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  49. Buchel F, Saliger S, Drager A et al (2013) Parkinson’s disease: dopaminergic nerve cell model is consistent with experimental finding of increased extracellular transport of alpha-synuclein. BMC Neurosci 14:136. doi:10.1186/1471-2202-14-136

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  50. Palomero-Gallagher N, Schleicher A, Bidmon H-J et al (2012) Multireceptor analysis in human neocortex reveals complex alterations of receptor ligand binding in focal epilepsies. Epilepsia 53:1987–1997. doi:10.1111/j.1528-1167.2012.03634.x

    Article  CAS  PubMed  Google Scholar 

  51. Mirza N, Vasieva O, Marson AG, Pirmohamed M (2011) Exploring the genomic basis of pharmacoresistance in epilepsy: an integrative analysis of large-scale gene expression profiling studies on brain tissue from epilepsy surgery. Hum Mol Genet 20:4381–4394. doi:10.1093/hmg/ddr365

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  52. Qi Z, Miller GW, Voit EO (2014) Rotenone and paraquat perturb dopamine metabolism: a computational analysis of pesticide toxicity. Toxicology 315:92–101. doi:10.1016/j.tox.2013.11.003

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  53. Rhodes SL, Buchanan DD, Ahmed I et al (2014) Pooled analysis of iron-related genes in Parkinson’s disease: association with transferrin. Neurobiol Dis 62:172–178. doi:10.1016/j.nbd.2013.09.019

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  54. Wexler EM, Rosen E, Lu D et al (2011) Genome-wide analysis of a Wnt1-regulated transcriptional network implicates neurodegenerative pathways. Sci Signal 4:ra65. doi:10.1126/scisignal.2002282

    Article  PubMed  CAS  Google Scholar 

  55. Chatterjee P, Bhattacharyya M, Bandyopadhyay S, Roy D (2014) Studying the system-level involvement of microRNAs in Parkinson’s disease. PLoS One 9:e93751. doi:10.1371/journal.pone.0093751

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  56. Satoh J (2012) Molecular network of microRNA targets in Alzheimer’s disease brains. Exp Neurol 235:436–446. doi:10.1016/j.expneurol.2011.09.003

    Article  CAS  PubMed  Google Scholar 

  57. Jimenez-Mateos EM, Henshall DC (2013) Epilepsy and microRNA. Neuroscience 238:218–229. doi:10.1016/j.neuroscience.2013.02.027

    Article  CAS  PubMed  Google Scholar 

  58. Stilling RM, Ronicke R, Benito E et al (2014) K-Lysine acetyltransferase 2a regulates a hippocampal gene expression network linked to memory formation. EMBO J 33:1912–1927. doi:10.15252/embj.201487870

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  59. Li Y, Chen JA, Sears RL et al (2014) An epigenetic signature in peripheral blood associated with the haplotype on 17q21.31, a risk factor for neurodegenerative tauopathy. PLoS Genet 10:e1004211. doi:10.1371/journal.pgen.1004211

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  60. Li G, Jiang H, Chang M et al (2011) HDAC6 alpha-tubulin deacetylase: a potential therapeutic target in neurodegenerative diseases. J Neurol Sci 304:1–8. doi:10.1016/j.jns.2011.02.017

    Article  CAS  PubMed  Google Scholar 

  61. Santiago JA, Potashkin JA (2014) System-based approaches to decode the molecular links in Parkinson’s disease and diabetes. Neurobiol Dis. doi:10.1016/j.nbd.2014.03.019

    PubMed  Google Scholar 

  62. Menon R, Farina C (2011) Shared molecular and functional frameworks among five complex human disorders: a comparative study on interactomes linked to susceptibility genes. PLoS One 6:e18660. doi:10.1371/journal.pone.0018660

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  63. Tu Z, Keller MP, Zhang C et al (2012) Integrative analysis of a cross-loci regulation network identifies App as a gene regulating insulin secretion from pancreatic islets. PLoS Genet 8:e1003107. doi:10.1371/journal.pgen.1003107

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  64. Schluesener JK, Zhu X, Schluesener HJ et al (2014) Key network approach reveals new insight into Alzheimer’s disease. IET Syst Biol 8:169–175. doi:10.1049/iet-syb.2013.0047

    Article  PubMed  Google Scholar 

  65. Llorens F, Del Rio JA (2012) Unraveling the neuroprotective mechanisms of PrP (C) in excitotoxicity. Prion 6:245–251. doi:10.4161/pri.19639

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  66. Rial D, Pamplona FA, Moreira ELG et al (2014) Cellular prion protein is present in dopaminergic neurons and modulates the dopaminergic system. Eur J Neurosci 40:2479–2486. doi:10.1111/ejn.12600

    Article  PubMed  Google Scholar 

  67. Cramm M, Schmitz M, Karch A et al (2014) Characteristic CSF prion seeding efficiency in humans with prion diseases. Mol Neurobiol. doi:10.1007/s12035-014-8709-6

    PubMed Central  PubMed  Google Scholar 

  68. Koenig KA, Lowe MJ, Harrington DL et al (2014) Functional connectivity of primary motor cortex is dependent on genetic burden in prodromal Huntington disease. Brain Connect 4:535–546. doi:10.1089/brain.2014.0271

    Article  PubMed Central  PubMed  Google Scholar 

  69. Szabadi E (2013) Functional neuroanatomy of the central noradrenergic system. J Psychopharmacol 27:659–693. doi:10.1177/0269881113490326

    Article  PubMed  CAS  Google Scholar 

  70. Elstner M, Morris CM, Heim K et al (2011) Expression analysis of dopaminergic neurons in Parkinson’s disease and aging links transcriptional dysregulation of energy metabolism to cell death. Acta Neuropathol 122:75–86. doi:10.1007/s00401-011-0828-9

    Article  CAS  PubMed  Google Scholar 

  71. Bae E-J, Yang N-Y, Song M et al (2014) Glucocerebrosidase depletion enhances cell-to-cell transmission of alpha-synuclein. Nat Commun 5:4755. doi:10.1038/ncomms5755

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  72. Ubeda-Banon I, Saiz-Sanchez D, de la Rosa-Prieto C, Martinez-Marcos A (2014) alpha-Synuclein in the olfactory system in Parkinson’s disease: role of neural connections on spreading pathology. Brain Struct Funct 219:1513–1526. doi:10.1007/s00429-013-0651-2

    CAS  PubMed  Google Scholar 

  73. Riley BE, Gardai SJ, Emig-Agius D et al (2014) Systems-based analyses of brain regions functionally impacted in Parkinson’s disease reveals underlying causal mechanisms. PLoS One 9:e102909. doi:10.1371/journal.pone.0102909

    Article  PubMed Central  PubMed  Google Scholar 

  74. Thaler A, Mirelman A, Helmich RC et al (2013) Neural correlates of executive functions in healthy G2019S LRRK2 mutation carriers. Cortex 49:2501–2511. doi:10.1016/j.cortex.2012.12.017

    Article  PubMed  Google Scholar 

  75. Yan J, Du L, Kim S et al (2014) Transcriptome-guided amyloid imaging genetic analysis via a novel structured sparse learning algorithm. Bioinformatics 30:i564–i571. doi:10.1093/bioinformatics/btu465

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  76. Campbell IM, Rao M, Arredondo SD et al (2013) Fusion of large-scale genomic knowledge and frequency data computationally prioritizes variants in epilepsy. PLoS Genet 9:e1003797. doi:10.1371/journal.pgen.1003797

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  77. Cherniak C (1990) The bounded brain: toward quantitative neuroanatomy. J Cogn Neurosci 2:58–68. doi:10.1162/jocn.1990.2.1.58

    Article  CAS  PubMed  Google Scholar 

  78. Azevedo FAC, Carvalho LRB, Grinberg LT et al (2009) Equal numbers of neuronal and nonneuronal cells make the human brain an isometrically scaled-up primate brain. J Comp Neurol 513:532–541. doi:10.1002/cne.21974

    Article  PubMed  Google Scholar 

  79. Swanson LW (2000) What is the brain? Trends Neurosci 23:519–527

    Article  CAS  PubMed  Google Scholar 

  80. Swanson LW (2011) Brain architecture: understanding the basic plan, 2nd edn. Oxford University Press, New York

    Book  Google Scholar 

  81. Stanton PK, Sejnowski TJ (1989) Associative long-term depression in the hippocampus induced by hebbian covariance. Nature 339:215–218. doi:10.1038/339215a0

    Article  CAS  PubMed  Google Scholar 

  82. Bliss TV, Collingridge GL (1993) A synaptic model of memory: long-term potentiation in the hippocampus. Nature 361:31–39. doi:10.1038/361031a0

    Article  CAS  PubMed  Google Scholar 

  83. Allen NJ, Barres BA (2009) Neuroscience: Glia - more than just brain glue. Nature 457:675–677. doi:10.1038/457675a

    Article  CAS  PubMed  Google Scholar 

  84. Takano T, Tian G-F, Peng W et al (2006) Astrocyte-mediated control of cerebral blood flow. Nat Neurosci 9:260–267. doi:10.1038/nn1623

    Article  CAS  PubMed  Google Scholar 

  85. Attwell D, Buchan AM, Charpak S et al (2010) Glial and neuronal control of brain blood flow. Nature 468:232–243. doi:10.1038/nature09613

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  86. Baumann N, Pham-Dinh D (2001) Biology of oligodendrocyte and myelin in the mammalian central nervous system. Physiol Rev 81:871–927

    CAS  PubMed  Google Scholar 

  87. Kreutzberg GW (1996) Microglia: a sensor for pathological events in the CNS. Trends Neurosci 19:312–318

    Article  CAS  PubMed  Google Scholar 

  88. Boyden ES, Zhang F, Bamberg E et al (2005) Millisecond-timescale, genetically targeted optical control of neural activity. Nat Neurosci 8:1263–1268. doi:10.1038/nn1525

    Article  CAS  PubMed  Google Scholar 

  89. Sporns O, Tononi G, Edelman GM (2000) Connectivity and complexity: the relationship between neuroanatomy and brain dynamics. Neural Netw 13:909–922

    Article  CAS  PubMed  Google Scholar 

  90. Allen NJ (2014) Synaptic plasticity: astrocytes wrap it up. Curr Biol 24:R697–R699. doi:10.1016/j.cub.2014.06.030

    Article  CAS  PubMed  Google Scholar 

  91. Zhang J, Wang H, Ye C et al (2003) ATP released by astrocytes mediates glutamatergic activity-dependent heterosynaptic suppression. Neuron 40:971–982

    Article  CAS  PubMed  Google Scholar 

  92. Halassa MM, Fellin T, Haydon PG (2007) The tripartite synapse: roles for gliotransmission in health and disease. Trends Mol Med 13:54–63. doi:10.1016/j.molmed.2006.12.005

    Article  CAS  PubMed  Google Scholar 

  93. Höfer T, Venance L, Giaume C (2002) Control and plasticity of intercellular calcium waves in astrocytes: a modeling approach. J Neurosci 22:4850–4859

    PubMed  Google Scholar 

  94. Barker AJ, Ullian EM (2010) Astrocytes and synaptic plasticity. Neuroscientist 16:40–50. doi:10.1177/1073858409339215

    Article  PubMed  Google Scholar 

  95. Morrison BM, Lee Y, Rothstein JD (2013) Oligodendroglia: metabolic supporters of axons. Trends Cell Biol 23:644–651. doi:10.1016/j.tcb.2013.07.007

    Article  CAS  PubMed  Google Scholar 

  96. Fünfschilling U, Supplie LM, Mahad D et al (2012) Glycolytic oligodendrocytes maintain myelin and long-term axonal integrity. Nature 485:517–521. doi:10.1038/nature11007

    PubMed Central  PubMed  Google Scholar 

  97. Paolicelli RC, Bolasco G, Pagani F et al (2011) Synaptic pruning by microglia is necessary for normal brain development. Science 333:1456–1458. doi:10.1126/science.1202529

    Article  CAS  PubMed  Google Scholar 

  98. Chung W-S, Clarke LE, Wang GX et al (2013) Astrocytes mediate synapse elimination through MEGF10 and MERTK pathways. Nature 504:394–400. doi:10.1038/nature12776

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  99. Kreiter AK, Singer W (1996) Stimulus-dependent synchronization of neuronal responses in the visual cortex of the awake macaque monkey. J Neurosci 16:2381–2396

    CAS  PubMed  Google Scholar 

  100. Cassidy M, Mazzone P, Oliviero A et al (2002) Movement-related changes in synchronization in the human basal ganglia. Brain 125:1235–1246

    Article  PubMed  Google Scholar 

  101. Lerche H, Shah M, Beck H et al (2013) Ion channels in genetic and acquired forms of epilepsy. J Physiol 591:753–764. doi:10.1113/jphysiol.2012.240606

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  102. Ragsdale DS (2008) How do mutant Nav1.1 sodium channels cause epilepsy? Brain Res Rev 58:149–159. doi:10.1016/j.brainresrev.2008.01.003

    Article  CAS  PubMed  Google Scholar 

  103. Lopes da Silva FH, Blanes W, Kalitzin SN et al (2003) Dynamical diseases of brain systems: different routes to epileptic seizures. IEEE Trans Biomed Eng 50:540–548. doi:10.1109/TBME.2003.810703

    Article  PubMed  Google Scholar 

  104. Jeha LE, Najm I, Bingaman W et al (2007) Surgical outcome and prognostic factors of frontal lobe epilepsy surgery. Brain 130:574–584. doi:10.1093/brain/awl364

    Article  PubMed  Google Scholar 

  105. Hong SL, Cossyleon D, Hussain WA et al (2012) Dysfunctional behavioral modulation of corticostriatal communication in the R6/2 mouse model of Huntington’s disease. PLoS One 7:e47026. doi:10.1371/journal.pone.0047026

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  106. Wellstead P, Cloutier M (2011) An energy systems approach to Parkinson’s disease. Wiley Interdiscip Rev Syst Biol Med 3:1–6. doi:10.1002/wsbm.107

    Article  CAS  PubMed  Google Scholar 

  107. Pissadaki EK, Bolam JP (2013) The energy cost of action potential propagation in dopamine neurons: clues to susceptibility in Parkinson’s disease. Front Comput Neurosci 7:13. doi:10.3389/fncom.2013.00013

    Article  PubMed Central  PubMed  Google Scholar 

  108. Uhl GR (1998) Hypothesis: the role of dopaminergic transporters in selective vulnerability of cells in Parkinson’s disease. Ann Neurol 43:555–560. doi:10.1002/ana.410430503

    Article  CAS  PubMed  Google Scholar 

  109. Chauhan NB, Siegel GJ, Lee JM (2001) Depletion of glial cell line-derived neurotrophic factor in substantia nigra neurons of Parkinson’s disease brain. J Chem Neuroanat 21:277–288

    Article  CAS  PubMed  Google Scholar 

  110. Goedert M (2001) Alpha-synuclein and neurodegenerative diseases. Nat Rev Neurosci 2:492–501. doi:10.1038/35081564

    Article  CAS  PubMed  Google Scholar 

  111. Goedert M, Spillantini MG, Del Tredici K, Braak H (2013) 100 years of Lewy pathology. Nat Rev Neurol 9:13–24. doi:10.1038/nrneurol.2012.242

    Article  CAS  PubMed  Google Scholar 

  112. Brown P (2003) Oscillatory nature of human basal ganglia activity: relationship to the pathophysiology of Parkinson’s disease. Mov Disord 18:357–363. doi:10.1002/mds.10358

    Article  PubMed  Google Scholar 

  113. Benazzouz A, Hallett M (2000) Mechanism of action of deep brain stimulation. Neurology 55:S13–S16

    CAS  PubMed  Google Scholar 

  114. Ross CA, Poirier MA (2004) Protein aggregation and neurodegenerative disease. Nat Med 10(Suppl):S10–S17. doi:10.1038/nm1066

    Article  PubMed  CAS  Google Scholar 

  115. Raj A, Kuceyeski A, Weiner M (2012) A network diffusion model of disease progression in dementia. Neuron 73:1204–1215. doi:10.1016/j.neuron.2011.12.040

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  116. Beal MF (1995) Aging, energy, and oxidative stress in neurodegenerative diseases. Ann Neurol 38:357–366. doi:10.1002/ana.410380304

    Article  CAS  PubMed  Google Scholar 

  117. Van Praag H, Fleshner M, Schwartz MW, Mattson MP (2014) Exercise, energy intake, glucose homeostasis, and the brain. J Neurosci 34:15139–15149. doi:10.1523/JNEUROSCI.2814-14.2014

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  118. Somogyi P, Hodgson AJ, Smith AD (1979) An approach to tracing neuron networks in the cerebral cortex and basal ganglia. Combination of Golgi staining, retrograde transport of horseradish peroxidase and anterograde degeneration of synaptic boutons in the same material. Neuroscience 4:1805–1852

    Article  CAS  PubMed  Google Scholar 

  119. Gray EG (1959) Axo-somatic and axo-dendritic synapses of the cerebral cortex: an electron microscope study. J Anat 93:420–433

    PubMed Central  CAS  PubMed  Google Scholar 

  120. Colonnier M (1968) Synaptic patterns on different cell types in the different laminae of the cat visual cortex. An electron microscope study. Brain Res 9:268–287

    Article  CAS  PubMed  Google Scholar 

  121. Dhawale A, Bhalla US (2008) The network and the synapse: 100 years after Cajal. HFSP J 2:12–16. doi:10.2976/1.2835214

    Article  PubMed Central  PubMed  Google Scholar 

  122. Roberts RC, Gaither LA, Peretti FJ et al (1996) Synaptic organization of the human striatum: a postmortem ultrastructural study. J Comp Neurol 374:523–534. doi:10.1002/(SICI)1096-9861(19961028)374:4<523::AID-CNE4>3.0.CO;2-3

    Article  CAS  PubMed  Google Scholar 

  123. Biederer T, Sara Y, Mozhayeva M et al (2002) SynCAM, a synaptic adhesion molecule that drives synapse assembly. Science 297:1525–1531. doi:10.1126/science.1072356

    Article  CAS  PubMed  Google Scholar 

  124. Livet J, Weissman TA, Kang H et al (2007) Transgenic strategies for combinatorial expression of fluorescent proteins in the nervous system. Nature 450:56–62. doi:10.1038/nature06293

    Article  CAS  PubMed  Google Scholar 

  125. Lichtman JW, Livet J, Sanes JR (2008) A technicolour approach to the connectome. Nat Rev Neurosci 9:417–422. doi:10.1038/nrn2391

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  126. Gomes FC, Spohr TC, Martinez R, Moura Neto V (2001) Cross-talk between neurons and glia: highlights on soluble factors. Braz J Med Biol Res 34:611–620

    Article  CAS  PubMed  Google Scholar 

  127. Piet R, Vargová L, Syková E et al (2004) Physiological contribution of the astrocytic environment of neurons to intersynaptic crosstalk. Proc Natl Acad Sci U S A 101:2151–2155. doi:10.1073/pnas.0308408100

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  128. Soriano J, Rodríguez Martínez M, Tlusty T, Moses E (2008) Development of input connections in neural cultures. Proc Natl Acad Sci U S A 105:13758–13763. doi:10.1073/pnas.0707492105

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  129. Van Bussel F, Kriener B, Timme M (2011) Inferring synaptic connectivity from spatio-temporal spike patterns. Front Comput Neurosci 5:3. doi:10.3389/fncom.2011.00003

    PubMed Central  PubMed  Google Scholar 

  130. Napoli A, Xie J, Obeid I (2014) Understanding the temporal evolution of neuronal connectivity in cultured networks using statistical analysis. BMC Neurosci 15:17. doi:10.1186/1471-2202-15-17

    Article  PubMed Central  PubMed  Google Scholar 

  131. Tye KM, Deisseroth K (2012) Optogenetic investigation of neural circuits underlying brain disease in animal models. Nat Rev Neurosci 13:251–266. doi:10.1038/nrn3171

    Article  CAS  PubMed  Google Scholar 

  132. Zhang F, Gradinaru V, Adamantidis AR et al (2010) Optogenetic interrogation of neural circuits: technology for probing mammalian brain structures. Nat Protoc 5:439–456. doi:10.1038/nprot.2009.226

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  133. Fenno LE, Mattis J, Ramakrishnan C et al (2014) Targeting cells with single vectors using multiple-feature Boolean logic. Nat Methods 11:763–772. doi:10.1038/nmeth.2996

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  134. Deisseroth K, Feng G, Majewska AK et al (2006) Next-generation optical technologies for illuminating genetically targeted brain circuits. J Neurosci 26:10380–10386. doi:10.1523/JNEUROSCI.3863-06.2006

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  135. Papa M, De Luca C, Petta F et al (2014) Astrocyte-neuron interplay in maladaptive plasticity. Neurosci Biobehav Rev 42:35–54. doi:10.1016/j.neubiorev.2014.01.010

    Article  CAS  PubMed  Google Scholar 

  136. López-Hidalgo M, Schummers J (2014) Cortical maps: a role for astrocytes? Curr Opin Neurobiol 24:176–189. doi:10.1016/j.conb.2013.11.001

    Article  PubMed  CAS  Google Scholar 

  137. Gullo F, Maffezzoli A, Dossi E et al (2012) Classifying heterogeneity of spontaneous up-states: a method for revealing variations in firing probability, engaged neurons and Fano factor. J Neurosci Methods 203:407–417. doi:10.1016/j.jneumeth.2011.10.014

    Article  PubMed  Google Scholar 

  138. Chung K, Wallace J, Kim S-Y et al (2013) Structural and molecular interrogation of intact biological systems. Nature 497:332–337. doi:10.1038/nature12107

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  139. Ke M-T, Fujimoto S, Imai T (2013) SeeDB: a simple and morphology-preserving optical clearing agent for neuronal circuit reconstruction. Nat Neurosci 16:1154–1161. doi:10.1038/nn.3447

    Article  CAS  PubMed  Google Scholar 

  140. Ahrens MB, Li JM, Orger MB et al (2012) Brain-wide neuronal dynamics during motor adaptation in zebrafish. Nature 485:471–477. doi:10.1038/nature11057

    PubMed Central  CAS  PubMed  Google Scholar 

  141. Freeman J, Vladimirov N, Kawashima T et al (2014) Mapping brain activity at scale with cluster computing. Nat Methods 11:941–950. doi:10.1038/nmeth.3041

    Article  CAS  PubMed  Google Scholar 

  142. Calimera A, Macii E, Poncino M (2013) The Human Brain Project and neuromorphic computing. Funct Neurol 28:191–196

    PubMed Central  PubMed  Google Scholar 

  143. Tønnesen J, Sørensen AT, Deisseroth K et al (2009) Optogenetic control of epileptiform activity. Proc Natl Acad Sci U S A 106:12162–12167. doi:10.1073/pnas.0901915106

    Article  PubMed Central  PubMed  Google Scholar 

  144. Heinrichs-Graham E, Wilson TW, Santamaria PM et al (2014) Neuromagnetic evidence of abnormal movement-related beta desynchronization in Parkinson’s disease. Cereb Cortex 24:2669–2678. doi:10.1093/cercor/bht121

    Article  PubMed Central  PubMed  Google Scholar 

  145. Bullmore E, Sporns O (2012) The economy of brain network organization. Nat Rev Neurosci 13:336–349. doi:10.1038/nrn3214

    CAS  PubMed  Google Scholar 

  146. Appel-Cresswell S, de la Fuente-Fernandez R, Galley S, McKeown MJ (2010) Imaging of compensatory mechanisms in Parkinson’s disease. Curr Opin Neurol 23:407–412. doi:10.1097/WCO.0b013e32833b6019

    Article  PubMed  Google Scholar 

  147. De Reus MA, van den Heuvel MP (2013) The parcellation-based connectome: limitations and extensions. Neuroimage 80:397–404. doi:10.1016/j.neuroimage.2013.03.053

    Article  PubMed  Google Scholar 

  148. Wen W, He Y, Sachdev P (2011) Structural brain networks and neuropsychiatric disorders. Curr Opin Psychiatry 24:219–225. doi:10.1097/YCO.0b013e32834591f8

    Article  PubMed  Google Scholar 

  149. Rombouts SARB, Damoiseaux JS, Goekoop R et al (2009) Model-free group analysis shows altered BOLD FMRI networks in dementia. Hum Brain Mapp 30:256–266. doi:10.1002/hbm.20505

    Article  PubMed  Google Scholar 

  150. Onias H, Viol A, Palhano-Fontes F et al (2013) Brain complex network analysis by means of resting state fMRI and graph analysis: will it be helpful in clinical epilepsy? Epilepsy Behav. doi:10.1016/j.yebeh.2013.11.019

    PubMed  Google Scholar 

  151. Huang S, Li J, Ye J et al (2013) A sparse structure learning algorithm for Gaussian Bayesian Network identification from high-dimensional data. IEEE Trans Pattern Anal Mach Intell 35:1328–1342. doi:10.1109/TPAMI.2012.129

    Article  PubMed Central  PubMed  Google Scholar 

  152. Baggio H-C, Sala-Llonch R, Segura B et al (2014) Functional brain networks and cognitive deficits in Parkinson’s disease. Hum Brain Mapp 35:4620–4634. doi:10.1002/hbm.22499

    Article  PubMed  Google Scholar 

  153. Toussaint P-J, Maiz S, Coynel D et al (2014) Characteristics of the default mode functional connectivity in normal ageing and Alzheimer’s disease using resting state fMRI with a combined approach of entropy-based and graph theoretical measurements. Neuroimage 101:778–786. doi:10.1016/j.neuroimage.2014.08.003

    Article  PubMed  Google Scholar 

  154. Abela E, Rummel C, Hauf M et al (2014) Neuroimaging of epilepsy: lesions, networks, oscillations. Clin Neuroradiol 24:5–15. doi:10.1007/s00062-014-0284-8

    Article  CAS  PubMed  Google Scholar 

  155. Tang CC, Eidelberg D (2010) Abnormal metabolic brain networks in Parkinson’s disease from blackboard to bedside. Prog Brain Res 184:161–176. doi:10.1016/S0079-6123(10)84008-7

    PubMed  Google Scholar 

  156. Niethammer M, Tang CC, Ma Y et al (2013) Parkinson’s disease cognitive network correlates with caudate dopamine. Neuroimage 78:204–209. doi:10.1016/j.neuroimage.2013.03.070

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  157. Teune LK, Strijkert F, Renken RJ et al (2014) The Alzheimer’s disease-related glucose metabolic brain pattern. Curr Alzheimer Res 11:725–732

    Article  CAS  PubMed  Google Scholar 

  158. Crossley NA, Mechelli A, Scott J et al (2014) The hubs of the human connectome are generally implicated in the anatomy of brain disorders. Brain 137:2382–2395. doi:10.1093/brain/awu132

    Article  PubMed Central  PubMed  Google Scholar 

  159. Coenen VA, Allert N, Paus S et al (2014) Modulation of the cerebello-thalamo-cortical network in thalamic deep brain stimulation for tremor: a diffusion tensor imaging study. Neurosurgery. doi:10.1227/NEU.0000000000000540

    PubMed  Google Scholar 

  160. Park KM, Shin KJ, Ha SY et al (2014) Response to antiepileptic drugs in partial epilepsy with structural lesions on MRI. Clin Neurol Neurosurg 123:64–68. doi:10.1016/j.clineuro.2014.04.029

    Article  PubMed  Google Scholar 

  161. Liu Y, Yu C, Zhang X et al (2014) Impaired long distance functional connectivity and weighted network architecture in Alzheimer’s disease. Cereb Cortex 24:1422–1435. doi:10.1093/cercor/bhs410

    Article  PubMed Central  PubMed  Google Scholar 

  162. Zhong Y, Huang L, Cai S et al (2014) Altered effective connectivity patterns of the default mode network in Alzheimer’s disease: an fMRI study. Neurosci Lett 578:171–175. doi:10.1016/j.neulet.2014.06.043

    Article  CAS  PubMed  Google Scholar 

  163. Schiff SJ (2010) Towards model-based control of Parkinson’s disease. Philos Trans A Math Phys Eng Sci 368:2269–2308. doi:10.1098/rsta.2010.0050

    Article  PubMed Central  PubMed  Google Scholar 

  164. Stocco A, Lebiere C, Anderson JR (2010) Conditional routing of information to the cortex: a model of the basal ganglia’s role in cognitive coordination. Psychol Rev 117:541–574. doi:10.1037/a0019077

    Article  PubMed Central  PubMed  Google Scholar 

  165. Redgrave P, Rodriguez M, Smith Y et al (2010) Goal-directed and habitual control in the basal ganglia: implications for Parkinson’s disease. Nat Rev Neurosci 11:760–772. doi:10.1038/nrn2915

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  166. Thibeault CM, Srinivasa N (2013) Using a hybrid neuron in physiologically inspired models of the basal ganglia. Front Comput Neurosci 7:88. doi:10.3389/fncom.2013.00088

    PubMed Central  PubMed  Google Scholar 

  167. Rummel C, Goodfellow M, Gast H et al (2013) A systems-level approach to human epileptic seizures. Neuroinformatics 11:159–173. doi:10.1007/s12021-012-9161-2

    Article  PubMed  Google Scholar 

  168. Olde Dubbelink KTE, Hillebrand A, Stoffers D et al (2014) Disrupted brain network topology in Parkinson’s disease: a longitudinal magnetoencephalography study. Brain 137:197–207. doi:10.1093/brain/awt316

    Article  PubMed  Google Scholar 

  169. Morales DA, Vives-Gilabert Y, Gomez-Anson B et al (2013) Predicting dementia development in Parkinson’s disease using Bayesian network classifiers. Psychiatry Res 213:92–98. doi:10.1016/j.pscychresns.2012.06.001

    Article  PubMed  Google Scholar 

  170. Cole DM, Oei NYL, Soeter RP et al (2013) Dopamine-dependent architecture of cortico-subcortical network connectivity. Cereb Cortex 23:1509–1516. doi:10.1093/cercor/bhs136

    Article  PubMed  Google Scholar 

  171. Seibyl J, Russell D, Jennings D, Marek K (2012) Neuroimaging over the course of Parkinson’s disease: from early detection of the at-risk patient to improving pharmacotherapy of later-stage disease. Semin Nucl Med 42:406–414. doi:10.1053/j.semnuclmed.2012.06.003

    Article  PubMed  Google Scholar 

  172. Rao JA, Harrington DL, Durgerian S et al (2014) Disruption of response inhibition circuits in prodromal Huntington disease. Cortex 58:72–85. doi:10.1016/j.cortex.2014.04.018

    Article  PubMed Central  PubMed  Google Scholar 

  173. Nombela C, Rowe JB, Winder-Rhodes SE et al (2014) Genetic impact on cognition and brain function in newly diagnosed Parkinson’s disease: ICICLE-PD study. Brain 137:2743–2758. doi:10.1093/brain/awu201

    Article  PubMed Central  PubMed  Google Scholar 

  174. Van Diessen E, Diederen SJH, Braun KPJ et al (2013) Functional and structural brain networks in epilepsy: what have we learned? Epilepsia 54:1855–1865. doi:10.1111/epi.12350

    Article  PubMed  Google Scholar 

  175. Stam CJ, Tewarie P, Van Dellen E et al (2014) The trees and the forest: characterization of complex brain networks with minimum spanning trees. Int J Psychophysiol 92:129–138. doi:10.1016/j.ijpsycho.2014.04.001

    Article  CAS  PubMed  Google Scholar 

  176. Otte WM, Dijkhuizen RM, van Meer MPA et al (2012) Characterization of functional and structural integrity in experimental focal epilepsy: reduced network efficiency coincides with white matter changes. PLoS One 7:e39078. doi:10.1371/journal.pone.0039078

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  177. Kalitzin S, Koppert M, Petkov G, da Silva FL (2014) Multiple oscillatory states in models of collective neuronal dynamics. Int J Neural Syst 24:1450020. doi:10.1142/S0129065714500208

    Article  PubMed  Google Scholar 

  178. Holt AB, Netoff TI (2014) Origins and suppression of oscillations in a computational model of Parkinson’s disease. J Comput Neurosci 37:505–521. doi:10.1007/s10827-014-0523-7

    Article  PubMed Central  PubMed  Google Scholar 

  179. Thiele I, Swainston N, Fleming RMT et al (2013) A community-driven global reconstruction of human metabolism. Nat Biotechnol. doi:10.1038/nbt.2488

    PubMed Central  PubMed  Google Scholar 

  180. Jain S, van Kesteren RE, Heutink P (2012) High content screening in neurodegenerative diseases. J Vis Exp:e3452. doi: 10.3791/3452

  181. Herrera F, Goncalves S, Outeiro TF (2012) Imaging protein oligomerization in neurodegeneration using bimolecular fluorescence complementation. Methods Enzymol 506:157–174. doi:10.1016/B978-0-12-391856-7.00033-0

    Article  CAS  PubMed  Google Scholar 

  182. Boassa D, Berlanga ML, Yang MA et al (2013) Mapping the subcellular distribution of alpha-synuclein in neurons using genetically encoded probes for correlated light and electron microscopy: implications for Parkinson’s disease pathogenesis. J Neurosci 33:2605–2615. doi:10.1523/JNEUROSCI.2898-12.2013

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  183. Meisel C, Kuehn C (2012) Scaling effects and spatio-temporal multilevel dynamics in epileptic seizures. PLoS One 7:e30371. doi:10.1371/journal.pone.0030371

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  184. Abuhassan K, Coyle D, Maguire LP (2012) Investigating the neural correlates of pathological cortical networks in Alzheimer’s disease using heterogeneous neuronal models. IEEE Trans Biomed Eng 59:890–896. doi:10.1109/TBME.2011.2181843

    Article  PubMed  Google Scholar 

  185. Piray P, Keramati MM, Dezfouli A et al (2010) Individual differences in nucleus accumbens dopamine receptors predict development of addiction-like behavior: a computational approach. Neural Comput 22:2334–2368. doi:10.1162/NECO_a_00009

    Article  PubMed  Google Scholar 

  186. Garcia-Reitboeck P, Anichtchik O, Dalley JW et al (2013) Endogenous alpha-synuclein influences the number of dopaminergic neurons in mouse substantia nigra. Exp Neurol 248:541–545. doi:10.1016/j.expneurol.2013.07.015

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  187. McKinstry SU, Karadeniz YB, Worthington AK et al (2014) Huntingtin is required for normal excitatory synapse development in cortical and striatal circuits. J Neurosci 34:9455–9472. doi:10.1523/JNEUROSCI.4699-13.2014

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  188. Hawrylycz MJ, Lein ES, Guillozet-Bongaarts AL et al (2012) An anatomically comprehensive atlas of the adult human brain transcriptome. Nature 489:391–399. doi:10.1038/nature11405

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  189. Lew MF (2011) The evidence for disease modification in Parkinson’s disease. Int J Neurosci 121(Suppl):18–26. doi:10.3109/00207454.2011.620194

    Article  CAS  PubMed  Google Scholar 

  190. Bartus RT, Weinberg MS, Samulski RJ (2014) Parkinson’s disease gene therapy: success by design meets failure by efficacy. Mol Ther 22:487–497. doi:10.1038/mt.2013.281

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  191. Lorenzi M, Beltramello A, Mercuri NB et al (2011) Effect of memantine on resting state default mode network activity in Alzheimer’s disease. Drugs Aging 28:205–217. doi:10.2165/11586440-000000000-00000

    Article  CAS  PubMed  Google Scholar 

  192. Fraschini M, Demuru M, Puligheddu M et al (2014) The re-organization of functional brain networks in pharmaco-resistant epileptic patients who respond to VNS. Neurosci Lett 580:153–157. doi:10.1016/j.neulet.2014.08.010

    Article  CAS  PubMed  Google Scholar 

  193. Ojemann GA, Ojemann J, Ramsey NF (2013) Relation between functional magnetic resonance imaging (fMRI) and single neuron, local field potential (LFP) and electrocorticography (ECoG) activity in human cortex. Front Hum Neurosci 7:34. doi:10.3389/fnhum.2013.00034

    Article  PubMed Central  PubMed  Google Scholar 

  194. Hill NJ, Gupta D, Brunner P et al (2012) Recording human electrocorticographic (ECoG) signals for neuroscientific research and real-time functional cortical mapping. J Vis Exp. doi:10.3791/3993

    PubMed Central  PubMed  Google Scholar 

  195. Kemmotsu N, Kucukboyaci NE, Leyden KM et al (2014) Frontolimbic brain networks predict depressive symptoms in temporal lobe epilepsy. Epilepsy Res 108:1554–1563. doi:10.1016/j.eplepsyres.2014.08.018

    Article  PubMed Central  PubMed  Google Scholar 

  196. Kahan J, Urner M, Moran R et al (2014) Resting state functional MRI in Parkinson’s disease: the impact of deep brain stimulation on “effective” connectivity. Brain 137:1130–1144. doi:10.1093/brain/awu027

    Article  PubMed Central  PubMed  Google Scholar 

  197. Stypulkowski PH, Stanslaski SR, Jensen RM et al (2014) Brain stimulation for epilepsy--local and remote modulation of network excitability. Brain Stimul 7:350–358. doi:10.1016/j.brs.2014.02.002

    Article  PubMed  Google Scholar 

  198. Guo Y, Rubin JE (2011) Multi-site stimulation of subthalamic nucleus diminishes thalamocortical relay errors in a biophysical network model. Neural Netw 24:602–616. doi:10.1016/j.neunet.2011.03.010

    Article  PubMed  Google Scholar 

  199. De Munter JPJM, Melamed E, Wolters EC (2014) Stem cell grafting in parkinsonism--why, how and when. Parkinsonism Relat Disord 20(Suppl 1):S150–S153. doi:10.1016/S1353-8020(13)70036-1

    Article  PubMed  Google Scholar 

  200. Ben-Yehudah A, Easley CA 4th, Hermann BP et al (2010) Systems biology discoveries using non-human primate pluripotent stem and germ cells: novel gene and genomic imprinting interactions as well as unique expression patterns. Stem Cell Res Ther 1:24. doi:10.1186/scrt24

    Article  PubMed Central  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rudi Balling .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Ostaszewski, M., Skupin, A., Balling, R. (2016). Neurological Diseases from a Systems Medicine Point of View. In: Schmitz, U., Wolkenhauer, O. (eds) Systems Medicine. Methods in Molecular Biology, vol 1386. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3283-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3283-2_11

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3282-5

  • Online ISBN: 978-1-4939-3283-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics