Skip to main content

Model-Based Approaches to Understanding Musculoskeletal Filtering of Neural Signals

  • Chapter
  • First Online:
Neuromechanical Modeling of Posture and Locomotion

Part of the book series: Springer Series in Computational Neuroscience ((NEUROSCI))

Abstract

The musculoskeletal system lies between the nervous system and its effects on the external world. Strong constraints imposed by joints, ligaments, and muscle attachments shape both the effect the nervous system can have on the external world and the proprioceptive information conveyed to the nervous system. The integrative nature of the neuro-musculo-skeletal system makes it difficult to examine the effects of this structure experimentally, and a well-developed mathematical framework allows analysis of otherwise inseparable aspects of the chain of control. Structure in the limbs seems to separate aspects of limb performance, such as weight support and propulsion, to different degrees of freedom, which may simplify neural control processes. The bi-directional nature of the musculoskeletal filter amplifies signals that the nervous system can most strongly influence and suppresses feedback of task parameters that are poorly controllable.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • Ackland DC, Lin YC, Pandy MG (2012) Sensitivity of model predictions of muscle function to changes in moment arms and muscle-tendon properties: a Monte-Carlo analysis. J Biomech 45:1463–1471

    Article  PubMed  Google Scholar 

  • Alexander RM (1991) Energy-saving mechanisms in walking and running. J Exp Biol 160:55–69

    CAS  PubMed  Google Scholar 

  • Alexander RM (1992) A model of bipedal locomotion on compliant legs. Philos Trans R Soc Lond B Biol Sci 338:189–198

    Article  CAS  PubMed  Google Scholar 

  • Anderson FC, Pandy MG (2001) Dynamic optimization of human walking. J Biomech Eng 123:381–390

    Article  CAS  PubMed  Google Scholar 

  • Auyang AG, Chang YH (2013) Effects of a foot placement constraint on use of motor equivalence during human hopping. PLoS One 8:e69429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bingham JT, Ting LH (2013) Stability radius as a method for comparing the dynamics of neuromechanical systems. IEEE Trans Neural Syst Rehabil Eng 21:840–848

    Article  PubMed  PubMed Central  Google Scholar 

  • Bosco G, Poppele RE (1993) Broad directional tuning in spinal projections to the cerebellum. J Neurophysiol 70:863–866

    CAS  PubMed  Google Scholar 

  • Brand RA, Crowninshield RD, Wittstock CE, Pedersen DR, Clark CR, van Krieken FM (1982) A model of lower extremity muscular anatomy. J Biomech Eng 104:304–310

    Article  CAS  PubMed  Google Scholar 

  • Buchanan TS, Moniz MJ, Dewald JP, Zev Rymer W (1993) Estimation of muscle forces about the wrist joint during isometric tasks using an EMG coefficient method. J Biomech 26:547–560

    Article  CAS  PubMed  Google Scholar 

  • Bunderson N, Bingham J (2015) Better science through predictive modeling: numerical tools for understanding neuromechanical interactions. In: Prilutsky BI, Edwards DH, Jr (eds) Neuromechanical modeling of posture and locomotion. Springer, New York (in press)

    Google Scholar 

  • Bunderson NE, Burkholder TJ, Ting LH (2008) Reduction of neuromuscular redundancy for postural force generation using an intrinsic stability criterion. J Biomech 41:1537–1544

    Article  PubMed  PubMed Central  Google Scholar 

  • Bunderson NE, McKay JL, Ting LH, Burkholder TJ (2010) Directional constraint of endpoint force emerges from hindlimb anatomy. J Exp Biol 213:2131–2141

    Article  PubMed  PubMed Central  Google Scholar 

  • Bunderson NE, Bingham JT, Hongchul Sohn M, Ting LH, Burkholder TJ (2012) Neuromechanic: a computational platform for simulation and analysis of the neural control of movement. Int J Numer Meth Biomed Eng 28:1015–1027

    Article  Google Scholar 

  • Burkholder TJ, Lieber RL (2001) Sarcomere length operating range of vertebrate muscles during movement. J Exp Biol 204:1529–1536

    CAS  PubMed  Google Scholar 

  • Burkholder TJ, Nichols TR (2004) Three-dimensional model of the feline hindlimb. J Morphol 261:118–129

    Article  PubMed  PubMed Central  Google Scholar 

  • Burkholder TJ, Fingado B, Baron S, Lieber RL (1994) Relationship between muscle fiber types and sizes and muscle architectural properties in the mouse hindlimb. J Morphol 221:177–190

    Article  CAS  PubMed  Google Scholar 

  • Burrows M, Morris G (2001) The kinematics and neural control of high-speed kicking movements in the locust. J Exp Biol 204:3471–3481

    CAS  PubMed  Google Scholar 

  • Chow CK, Jacobson DH (1972) Further studies of human locomotion: postural stability and control. Math Biosci 15:93–108

    Article  Google Scholar 

  • Collins S, Ruina A, Tedrake R, Wisse M (2005) Efficient bipedal robots based on passive-dynamic walkers. Science 307:1082–1085

    Article  CAS  PubMed  Google Scholar 

  • Correa TA, Baker R, Graham HK, Pandy MG (2011) Accuracy of generic musculoskeletal models in predicting the functional roles of muscles in human gait. J Biomech 44:2096–2105

    Article  PubMed  Google Scholar 

  • Crowninshield RD, Brand RA (1981) A physiologically based criterion of muscle force prediction in locomotion. J Biomech 14:793–801

    Article  CAS  PubMed  Google Scholar 

  • Delp SL, Loan JP, Hoy MG, Zajac FE, Topp EL, Rosen JM (1990) An interactive graphics-based model of the lower extremity to study orthopaedic surgical procedures. IEEE Trans Biomed Eng 37:757–767

    Article  CAS  PubMed  Google Scholar 

  • Delp SL, Anderson FC, Arnold AS, Loan P, Habib A, John CT et al (2007) OpenSim: open-source software to create and analyze dynamic simulations of movement. IEEE Trans Biomed Eng 54:1940–1950

    Article  PubMed  Google Scholar 

  • Eng CM, Smallwood LH, Rainiero MP, Lahey M, Ward SR, Lieber RL (2008) Scaling of muscle architecture and fiber types in the rat hindlimb. J Exp Biol 211:2336–2345

    Article  PubMed  Google Scholar 

  • Full RJ, Koditschek DE (1999) Templates and anchors: neuromechanical hypotheses of legged locomotion on land. J Exp Biol 202:3325–3332

    CAS  PubMed  Google Scholar 

  • Gasser HS, Hill AV (1924) The dynamics of muscular contraction. Proc R Soc Lond B Biol Sci 96:398–437

    Article  Google Scholar 

  • Geyer H, Seyfarth A, Blickhan R (2006) Compliant leg behaviour explains basic dynamics of walking and running. Proc Biol Sci 273:2861–2867

    Article  PubMed  PubMed Central  Google Scholar 

  • Gomi H, Kawato M (1997) Human arm stiffness and equilibrium-point trajectory during multi-joint movement. Biol Cybern 76:163–171

    Article  CAS  PubMed  Google Scholar 

  • Gribble PL, Ostry DJ, Sanguineti V, Laboissiere R (1998) Are complex control signals required for human arm movement? J Neurophysiol 79:1409–1424

    CAS  PubMed  Google Scholar 

  • Hase K, Stein RB (1999) Turning strategies during human walking. J Neurophysiol 81:2914–2922

    CAS  PubMed  Google Scholar 

  • Henry SM, Fung J, Horak FB (2001) Effect of stance width on multidirectional postural responses. J Neurophysiol 85:559–570

    CAS  PubMed  Google Scholar 

  • Hollister AM, Jatana S, Singh AK, Sullivan WW, Lupichuk AG (1993) The axes of rotation of the knee. Clin Orthop Relat Res 290:259–268

    Google Scholar 

  • Hsu WL, Scholz JP, Schoner G, Jeka JJ, Kiemel T (2007) Control and estimation of posture during quiet stance depends on multijoint coordination. J Neurophysiol 97:3024–3035.

    Article  PubMed  Google Scholar 

  • Huijing PA, Baan GC, Rebel GT (1998) Non-myotendinous force transmission in rat extensor digitorum longus muscle. J Exp Biol 201:683–691.

    CAS  Google Scholar 

  • Josephson RK (1985) Mechanical power output from striated muscle during cyclic contraction. J Exp Biol 114:493–512

    Google Scholar 

  • Lam T, Pearson KG (2001) Proprioceptive modulation of hip flexor activity during the swing phase of locomotion in decerebrate cats. J Neurophysiol 86:1321–1332

    CAS  PubMed  Google Scholar 

  • Latash ML, Gottlieb GL (1991) Reconstruction of shifting elbow joint compliant characteristics during fast and slow movements. Neuroscience 43:697–712

    Article  CAS  PubMed  Google Scholar 

  • Lin DC, Rymer WZ (2000) Damping actions of the neuromuscular system with inertial loads: soleus muscle of the decerebrate cat. J Neurophysiol 83:652–658.

    CAS  PubMed  Google Scholar 

  • Lockhart DB, Ting LH (2007) Optimal sensorimotor transformations for balance. Nat Neurosci 10:1329–1336

    Article  CAS  PubMed  Google Scholar 

  • Loren GJ, Shoemaker SD, Burkholder TJ, Jacobson MD, Friden J, Lieber RL (1996) Human wrist motors: biomechanical design and application to tendon transfers. J Biomech 29:331–342

    Article  CAS  PubMed  Google Scholar 

  • Lutz GJ, Rome LC (1996) Muscle function during jumping in frogs. II. Mechanical properties of muscle: implications for system design. Am J Physiol 271:C571–C578

    CAS  PubMed  Google Scholar 

  • Maas H, Huijing PA (2009) Synergistic and antagonistic interactions in the rat forelimb: acute effects of coactivation. J Appl Physiol (1985) 107:1453–1462

    Article  Google Scholar 

  • Macpherson JM (1988) Strategies that simplify the control of quadrupedal stance. I. Forces at the ground. J Neurophysiol 60:204–217

    CAS  PubMed  Google Scholar 

  • McGeer T (1990a) Passive bipedal running. Proc R Soc Lond B Biol Sci 240:107–134

    Article  CAS  PubMed  Google Scholar 

  • McGeer T (1990b) Passive dynamic walking. Int J Robot Res 9:62–82

    Article  Google Scholar 

  • McKay JL, Ting LH (2008) Functional muscle synergies constrain force production during postural tasks. J Biomech 41:299–306

    Article  PubMed  Google Scholar 

  • McKay JL, Ting LH (2012) Optimization of muscle activity for task-level goals predicts complex changes in limb forces across biomechanical contexts. PLoS Comput Biol 8:e1002465

    Article  PubMed  PubMed Central  Google Scholar 

  • McKay JL, Burkholder TJ, Ting LH (2007) Biomechanical capabilities influence postural control strategies in the cat hindlimb. J Biomech 40:2254–2260

    Article  PubMed  Google Scholar 

  • Morgan DL, Proske U, Warren D (1978) Measurements of muscle stiffness and the mechanism of elastic storage of energy in hopping kangaroos. J Physiol 282:253–261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nozaki D, Nakazawa K, Akai M (2005) Muscle activity determined by cosine tuning with a nontrivial preferred direction during isometric force exertion by lower limb. J Neurophysiol 93:2614–2624

    Article  PubMed  Google Scholar 

  • O’Neill MC, Lee LF, Larson SG, Demes B, Stern JT, Jr., Umberger BR (2013) A three-dimensional musculoskeletal model of the chimpanzee (Pan troglodytes) pelvis and hind limb. J Exp Biol 216:3709–3723

    Article  PubMed  Google Scholar 

  • Prilutsky BI (2000) Coordination of two- and one-joint muscles: functional consequences and implications for motor control. Motor Control 4:1–44

    Article  CAS  PubMed  Google Scholar 

  • Rybak IA, Stecina K, Shevtsova NA, McCrea DA (2006) Modelling spinal circuitry involved in locomotor pattern generation: insights from the effects of afferent stimulation. J Physiol 577:641–658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sandercock TG, Heckman CJ (1997) Force from cat soleus muscle during imposed locomotor-like movements: experimental data versus Hill-type model predictions. J Neurophysiol 77:1538–1552

    CAS  PubMed  Google Scholar 

  • Scheys L, Spaepen A, Suetens P, Jonkers I (2008) Calculated moment-arm and muscle-tendon lengths during gait differ substantially using MR based versus rescaled generic lower-limb musculoskeletal models. Gait Posture 28:640–648

    Article  PubMed  Google Scholar 

  • Scholz JP, Schoner G (1999) The uncontrolled manifold concept: identifying control variables for a functional task. Exp Brain Res 126:289–306

    Article  CAS  PubMed  Google Scholar 

  • Scovil CY, Ronsky JL (2006) Sensitivity of a hill-based muscle model to perturbations in model parameters. J Biomech 39:2055–2063

    Article  PubMed  Google Scholar 

  • Smutz WP, Kongsayreepong A, Hughes RE, Niebur G, Cooney WP, An KN (1998) Mechanical advantage of the thumb muscles. J Biomech 31:565–570

    Article  CAS  PubMed  Google Scholar 

  • Southgate DF, Cleather DJ, Weinert-Aplin RA, Bull AM (2012) The sensitivity of a lower limb model to axial rotation offsets and muscle bounds at the knee. Proc Inst Mech Eng H 226:660–669

    Article  PubMed  PubMed Central  Google Scholar 

  • Todorov E (2007) Probabilistic inference of multijoint movements, skeletal parameters and marker attachments from diverse motion capture data. IEEE Trans Biomed Eng 54:1927–1939

    Article  PubMed  Google Scholar 

  • Valero-Cuevas FJ, Johanson ME, Towles JD (2003) Towards a realistic biomechanical model of the thumb: the choice of kinematic description may be more critical than the solution method or the variability/uncertainty of musculoskeletal parameters. J Biomech 36:1019–1030

    Article  PubMed  Google Scholar 

  • Whittington B, Silder A, Heiderscheit B, Thelen DG (2008) The contribution of passive-elastic mechanisms to lower extremity joint kinetics during human walking. Gait Posture 27:628–634

    Article  PubMed  Google Scholar 

  • Winter DA, Patla AE, Prince F, Ishac M, Gielo-Perczak K (1998) Stiffness control of balance in quiet standing. J Neurophysiol 80:1211–1221

    CAS  PubMed  Google Scholar 

  • Young RP, Scott SH, Loeb GE (1992) An intrinsic mechanism to stabilize posture–joint-angle-dependent moment arms of the feline ankle muscles. Neurosci Lett 145:137–140

    Article  CAS  PubMed  Google Scholar 

  • Zajac FE (1989) Muscle and tendon: properties, models, scaling, and application to biomechanics and motor control. Crit Rev Biomed Eng 17:359–411

    CAS  PubMed  Google Scholar 

  • Zajac FE, Gordon ME (1989) Determining muscle’s force and action in multi-articular movement. Exerc Sport Sci Rev 17:187–230

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by NIH grants HD032571 and HD46922. The NIH had no role in the design, performance or interpretation of the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas J. Burkholder PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this chapter

Cite this chapter

Burkholder, T. (2016). Model-Based Approaches to Understanding Musculoskeletal Filtering of Neural Signals. In: Prilutsky, B., Edwards, D. (eds) Neuromechanical Modeling of Posture and Locomotion. Springer Series in Computational Neuroscience. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-3267-2_4

Download citation

Publish with us

Policies and ethics