Skip to main content

Molecular Modeling of Fluorescent SERCA Biosensors

  • Protocol
P-Type ATPases

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1377))

Abstract

Molecular modeling and simulation are useful tools in structural biology, allowing the formulation of functional hypotheses and interpretation of spectroscopy experiments. Here, we describe a method to construct in silico models of a fluorescent fusion protein construct, where a cyan fluorescent protein (CFP) is linked to the actuator domain of the Sarco/Endoplasmic Reticulum Ca2+-ATPase (SERCA). This CFP-SERCA construct is a biosensor that can report on structural dynamics in the cytosolic headpiece of SERCA. Molecular modeling and FRET experiments allow us to generate new structural and mechanistic models that better describe the conformational landscape and regulation of SERCA. The methods described here can be applied to the creation of models for any fusion protein constructs and also describe the steps needed to simulate FRET results using molecular models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Winters DL, Autry JM, Svensson B et al (2008) Interdomain fluorescence resonance energy transfer in SERCA probed by cyan-fluorescent protein fused to the actuator domain. Biochemistry 47:4246–4256

    Article  PubMed  CAS  Google Scholar 

  2. Hou Z, Hu Z, Blackwell DJ et al (2012) 2-Color calcium pump reveals closure of the cytoplasmic headpiece with calcium binding. PLoS One 7:e40369

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  3. Pallikkuth S, Blackwell DJ, Hu Z et al (2013) Phosphorylated phospholamban stabilizes a compact conformation of the cardiac calcium-ATPase. Biophys J 105:1812–1821

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  4. Autry JM, Rubin JE, Pietrini SD et al (2011) Oligomeric interactions of sarcolipin and the Ca-ATPase. J Biol Chem 286:31697–31706

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  5. Gruber SJ, Haydon S, Thomas DD (2012) Phospholamban mutants compete with wild type for SERCA binding in living cells. Biochem Biophys Res Commun 420:236–240

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  6. Gruber SJ, Cornea RL, Li J et al (2014) Discovery of enzyme modulators via high-throughput time-resolved FRET in living cells. J Biomol Screen 19:215–222

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  7. Vagin O, Denevich S, Sachs G (2003) Plasma membrane delivery of the gastric H, K-ATPase: the role of beta-subunit glycosylation. Am J Physiol Cell Physiol 285:C968–C976

    Article  PubMed  CAS  Google Scholar 

  8. Cho JH, Bandyopadhyay J, Lee J et al (2000) Two isoforms of sarco/endoplasmic reticulum calcium ATPase (SERCA) are essential in Caenorhabditis elegans. Gene 261:211–219

    Article  PubMed  CAS  Google Scholar 

  9. Hauser K, Pavlovic N, Klauke N et al (2000) Green fluorescent protein-tagged sarco(endo)plasmic reticulum Ca2+-ATPase overexpression in Paramecium cells: isoforms, subcellular localization, biogenesis of cortical calcium stores and functional aspects. Mol Microbiol 37:773–787

    Article  PubMed  CAS  Google Scholar 

  10. Gravot A, Lieutaud A, Verret F et al (2004) AtHMA3, a plant P1B-ATPase, functions as a Cd/Pb transporter in yeast. FEBS Lett 561:22–28

    Article  PubMed  CAS  Google Scholar 

  11. Lefebvre B, Batoko H, Duby G et al (2004) Targeting of a Nicotiana plumbaginifolia H+-ATPase to the plasma membrane is not by default and requires cytosolic structural determinants. Plant Cell 16:1772–1789

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  12. Furuya T, Okura M, Ruiz FA et al (2001) TcSCA complements yeast mutants defective in Ca2+ pumps and encodes a Ca2+-ATPase that localizes to the endoplasmic reticulum of Trypanosoma cruzi. J Biol Chem 276:32437–32445

    Article  PubMed  CAS  Google Scholar 

  13. Toyoshima C, Nomura H (2002) Structural changes in the calcium pump accompanying the dissociation of calcium. Nature 418:605–611

    Article  PubMed  CAS  Google Scholar 

  14. Pham E, Chiang J, Li I et al (2007) A computational tool for designing FRET protein biosensors by rigid-body sampling of their conformational space. Structure 15:515–523

    Article  PubMed  CAS  Google Scholar 

  15. Chiang J, Li I, Pham E et al (2006) FPMOD: a modeling tool for sampling the conformational space of fusion proteins. Conf Proc IEEE Eng Med Biol Soc 1:4111–4114

    PubMed  Google Scholar 

  16. Pham E, Truong K (2010) Design of fluorescent fusion protein probes. Methods Mol Biol 591:69–91

    Article  PubMed  CAS  Google Scholar 

  17. Berman HM, Westbrook J, Feng Z et al (2000) The Protein Data Bank. Nucleic Acids Res 28:235–242

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  18. Budisa N, Pal PP, Alefelder S et al (2004) Probing the role of tryptophans in Aequorea victoria green fluorescent proteins with an expanded genetic code. Biol Chem 385:191–202

    PubMed  CAS  Google Scholar 

  19. Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14(33–38):27–38

    Google Scholar 

  20. Rosell FI, Boxer SG (2003) Polarized absorption spectra of green fluorescent protein single crystals: transition dipole moment directions. Biochemistry 42:177–183

    Article  PubMed  CAS  Google Scholar 

  21. Ansbacher T, Srivastava HK, Stein T et al (2012) Calculation of transition dipole moment in fluorescent proteins – towards efficient energy transfer. Phys Chem Chem Phys 14:4109–4117

    Article  PubMed  CAS  Google Scholar 

  22. Kelly EM, Hou Z, Bossuyt J et al (2008) Phospholamban oligomerization, quaternary structure, and sarco(endo)plasmic reticulum calcium ATPase binding measured by fluorescence resonance energy transfer in living cells. J Biol Chem 283:12202–12211

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  23. Hou Z, Robia SL (2010) Relative affinity of calcium pump isoforms for phospholamban quantified by fluorescence resonance energy transfer. J Mol Biol 402:210–216

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  24. Dale RE, Eisinger J, Blumberg WE (1979) The orientational freedom of molecular probes. The orientation factor in intramolecular energy transfer. Biophys J 26:161–193

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  25. Van Der Meer BW, Coker Iii G, Chen S-YS (1994) Resonance energy transfer, theory and data. VCH, New York, NY

    Google Scholar 

  26. Vanbeek DB, Zwier MC, Shorb JM et al (2007) Fretting about FRET: correlation between kappa and R. Biophys J 92:4168–4178

    Article  PubMed  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgement

This work was supported by NIH grants GM27906 and AR007612. Computational resources were provided by Minnesota Supercomputing Institute. This method chapter was previously presented as a hands-on tutorial at a regional Biophysical Society Networking Symposium at St. Olaf College, Northfield, MN.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bengt Svensson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Svensson, B., Autry, J.M., Thomas, D.D. (2016). Molecular Modeling of Fluorescent SERCA Biosensors. In: Bublitz, M. (eds) P-Type ATPases. Methods in Molecular Biology, vol 1377. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3179-8_42

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3179-8_42

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3178-1

  • Online ISBN: 978-1-4939-3179-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics