Skip to main content

Dendrimer Nanovectors for SiRNA Delivery

  • Protocol
SiRNA Delivery Methods

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1364))

Abstract

Small interfering RNA (SiRNA) delivery remains a major challenge in RNAi-based therapy. Dendrimers are emerging as appealing nonviral vectors for SiRNA delivery thanks to their well-defined architecture and their unique cooperativity and multivalency confined within a nanostructure. We have recently demonstrated that structurally flexible poly(amidoamine) (PAMAM) dendrimers are safe and effective nanovectors for SiRNA delivery in various disease models in vitro and in vivo. The present chapter showcases these dendrimers can package different SiRNA molecules into stable and nanosized particles, which protect SiRNA from degradation and promote cellular uptake of SiRNA, resulting in potent gene silencing at both mRNA and protein level in the prostate cancer cell model. Our results demonstrate this set of flexible PAMAM dendrimers are indeed safe and effective nonviral vectors for SiRNA delivery and hold great promise for further applications in functional genomics and RNAi-based therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. de Fougerolles A, Vornlocher HP, Maraganore J, Lieberman J (2007) Interfering with disease: a progress report on siRNA-based therapeutics. Nat Rev Drug Discov 6:443–453

    Article  PubMed  Google Scholar 

  2. Castanotto D, Rossi JJ (2009) The promises and pitfalls of RNA-interference-based therapeutics. Nature 457:426–433

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Whitehead KA, Langer R, Anderson DG (2009) Knocking down barriers: advances in siRNA delivery. Nat Rev Drug Discov 8:129–138

    Article  CAS  PubMed  Google Scholar 

  4. Kanasty RL, Whitehead KA, Vegas AJ, Anderson DG (2012) Action and reaction: the biological response to siRNA and its delivery vehicles. Mol Ther 20:513–524

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Couto LB, High KA (2010) Viral vector-mediated RNA interference. Curr Opin Pharmacol 10:534–542

    Article  CAS  PubMed  Google Scholar 

  6. Vögtle F, Richardt G, Werner N (2009) Dendrimer chemistry: concepts, syntheses, properties, applications. Wiley-VCH, Weinheim, p 354

    Google Scholar 

  7. Liu X, Rocchi P, Peng L (2012) Dendrimers as non-viral vectors for siRNA delivery. New J Chem 36:256–263

    Article  CAS  Google Scholar 

  8. Wu J, Zhou J, Qu F, Bao P, Zhang Y, Peng L (2005) Polycationic dendrimers interact with RNA molecules: polyamine dendrimers inhibit the catalytic activity of Candida ribozymes. Chem Commun 313–315

    Google Scholar 

  9. Behr JP (1997) The proton sponge: a trick to enter cells the viruses did not exploit. Chimia 51:34–36

    CAS  Google Scholar 

  10. Liu X, Wu J, Yammine M, Zhou J, Posocco P, Viel S, Liu C, Ziarelli F, Fermeglia M, Pricl S, Victorero G, Nguyen C, Erbacher P, Behr JP, Peng L (2011) Structurally flexible triethanolamine core PAMAM dendrimers are effective nanovectors for DNA transfection in vitro and in vivo to the mouse thymus. Bioconjug Chem 22:2461–2473

    Article  CAS  PubMed  Google Scholar 

  11. Liu X, Liu C, Laurini E, Posocco P, Pricl S, Qu F, Rocchi P, Peng L (2012) Efficient delivery of sticky siRNA and potent gene silencing in a prostate cancer model using a generation 5 triethanolamine-core PAMAM dendrimer. Mol Pharm 9:470–481

    Article  CAS  PubMed  Google Scholar 

  12. Zhou J, Wu J, Hafdi N, Behr JP, Erbacher P, Peng L (2006) PAMAM dendrimers for efficient siRNA delivery and potent gene silencing. Chem Commun 2362–2364

    Google Scholar 

  13. Liu XX, Rocchi P, Qu FQ, Zheng SQ, Liang ZC, Gleave M, Iovanna J, Peng L (2009) PAMAM dendrimers mediate siRNA delivery to target Hsp27 and produce potent antiproliferative effects on prostate cancer cells. ChemMedChem 4:1302–1310

    Article  PubMed  Google Scholar 

  14. Zhou J, Neff CP, Liu X, Zhang J, Li H, Smith DD, Swiderski P, Aboellail T, Huang Y, Du Q, Liang Z, Peng L, Akkina R, Rossi JJ (2011) Systemic administration of combinatorial dsiRNAs via nanoparticles efficiently suppresses HIV-1 infection in humanized mice. Mol Ther 19:2228–2238

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Liu C, Liu X, Rocchi P, Qu F, Iovanna JL, Peng L (2014) Arginine-terminated generation 4 PAMAM dendrimer as an effective nanovector for functional siRNA delivery in vitro and in vivo. Bioconjug Chem 25:521–532

    Article  CAS  PubMed  Google Scholar 

  16. Liu X, Liu C, Catapano CV, Peng L, Zhou J, Rocchi P (2014) Structurally flexible triethanolamine-core poly(amidoamine) dendrimers as effective nanovectors to deliver RNAi-based therapeutics. Biotechnol Adv 32:844–852

    Article  PubMed  Google Scholar 

  17. Liu X, Liu C, Chen C, Bentobji M, Cheillan FA, Piana JT, Qu F, Rocchi P, Peng L (2014) Targeted delivery of Dicer-substrate siRNAs using a dual targeting peptide decorated dendrimer delivery system. Nanomedicine. doi:10.1016/j.nano.2014.1005.1008

    Google Scholar 

  18. Acunzo J, Katsogiannou M, Rocchi P (2012) Small heat shock proteins HSP27 (HspB1), alphaB-crystallin (HspB5) and HSP22 (HspB8) as regulators of cell death. Int J Biochem Cell Biol 44:1622–1631

    Article  CAS  PubMed  Google Scholar 

  19. Rocchi P, So A, Kojima S, Signaevsky M, Beraldi E, Fazli L, Hurtado-Coll A, Yamanaka K, Gleave M (2004) Heat shock protein 27 increases after androgen ablation and plays a cytoprotective role in hormone-refractory prostate cancer. Cancer Res 64:6595–6602

    Article  CAS  PubMed  Google Scholar 

  20. Cornford PA, Dodson AR, Parsons KF, Desmond AD, Woolfenden A, Fordham M, Neoptolemos JP, Ke Y, Foster CS (2000) Heat shock protein expression independently predicts clinical outcome in prostate cancer. Cancer Res 60:7099–7105

    CAS  PubMed  Google Scholar 

  21. Zoubeidi A, Gleave M (2012) Small heat shock proteins in cancer therapy and prognosis. Int J Biochem Cell Biol 44:1646–1656

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the international ERA-Net EURONANOMED European Research project DENANORNA, PACA Canceropôle, INCa, Aix-Marseille Université, CNRS, INSERM, China Scholarship Council (XL), Association pour la Recherche sur les Tumeurs de la Prostate (XL), Association Française contre les Myopathies (XL), and under the auspice of European COST Action TD0802 “Dendrimers in Biomedical Applications.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ling Peng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Liu, X., Peng, L. (2016). Dendrimer Nanovectors for SiRNA Delivery. In: Shum, K., Rossi, J. (eds) SiRNA Delivery Methods. Methods in Molecular Biology, vol 1364. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3112-5_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3112-5_11

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3111-8

  • Online ISBN: 978-1-4939-3112-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics