Skip to main content

Simple and Reproducible Sample Preparation for Single-Shot Phosphoproteomics with High Sensitivity

  • Protocol
Phospho-Proteomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1355))

Abstract

The traditional sample preparation workflow for mass spectrometry (MS)-based phosphoproteomics is time consuming and usually requires multiple steps, e.g., lysis, protein precipitation, reduction, alkylation, digestion, fractionation, and phosphopeptide enrichment. Each step can introduce chemical artifacts, in vitro protein and peptide modifications, and contaminations. Those often result in sample loss and affect the sensitivity, dynamic range and accuracy of the mass spectrometric analysis. Here we describe a simple and reproducible phosphoproteomics protocol, where lysis, denaturation, reduction, and alkylation are performed in a single step, thus reducing sample loss and increasing reproducibility. Moreover, unlike standard cell lysis procedures the cell harvesting is performed at high temperatures (99 °C) and without detergents and subsequent need for protein precipitation. Phosphopeptides are enriched using TiO2 beads and the orbitrap mass spectrometer is operated in a sensitive mode with higher energy collisional dissociation (HCD).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Macek B, Mann M, Olsen JV (2009) Global and site-specific quantitative phosphoproteomics: principles and applications. Annu Rev Pharmacol Toxicol 49:199–221. doi:10.1146/annurev.pharmtox.011008.145606

    Article  CAS  PubMed  Google Scholar 

  2. Mann M, Ong SE, Gronborg M, Steen H, Jensen ON, Pandey A (2002) Analysis of protein phosphorylation using mass spectrometry: deciphering the phosphoproteome. Trends Biotechnol 20(6):261–268

    Article  CAS  PubMed  Google Scholar 

  3. Kulak NA, Pichler G, Paron I, Nagaraj N, Mann M (2014) Minimal, encapsulated proteomic-sample processing applied to copy-number estimation in eukaryotic cells. Nat Methods 11(3):319–324. doi:10.1038/nmeth.2834

    Article  CAS  PubMed  Google Scholar 

  4. Greene RF Jr, Pace CN (1974) Urea and guanidine hydrochloride denaturation of ribonuclease, lysozyme, alpha-chymotrypsin, and beta-lactoglobulin. J Biol Chem 249(17):5388–5393

    CAS  PubMed  Google Scholar 

  5. Lippincott J, Apostol I (1999) Carbamylation of cysteine: a potential artifact in peptide mapping of hemoglobins in the presence of urea. Anal Biochem 267(1):57–64. doi:10.1006/abio.1998.2970

    Article  CAS  PubMed  Google Scholar 

  6. Poulsen JW, Madsen CT, Young C, Poulsen FM, Nielsen ML (2013) Using guanidine-hydrochloride for fast and efficient protein digestion and single-step affinity-purification mass spectrometry. J Proteome Res 12(2):1020–1030. doi:10.1021/pr300883y

    Article  CAS  PubMed  Google Scholar 

  7. Francavilla C, Hekmat O, Blagoev B, Olsen JV (2014) SILAC-Based Temporal Phosphoproteomics. Methods Mol Biol 1188:125–148. doi:10.1007/978-1-4939-1142-4_10

    Article  PubMed  Google Scholar 

  8. Kelstrup CD, Young C, Lavallee R, Nielsen ML, Olsen JV (2012) Optimized fast and sensitive acquisition methods for shotgun proteomics on a quadrupole orbitrap mass spectrometer. J Proteome Res 11(6):3487–3497. doi:10.1021/pr3000249

    Article  CAS  PubMed  Google Scholar 

  9. Cox J, Mann M (2008) MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat Biotechnol 26(12):1367–1372. doi:10.1038/nbt.1511

    Article  CAS  PubMed  Google Scholar 

  10. Li QR, Ning ZB, Tang JS, Nie S, Zeng R (2009) Effect of peptide-to-TiO2 beads ratio on phosphopeptide enrichment selectivity. J Proteome Res 8(11):5375–5381. doi:10.1021/pr900659n

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank members of the Proteomics Program at the Novo Nordisk Foundation Center for Protein Research (CPR) for critical input on the protocol. Work at CPR is funded in part by a generous donation from the Novo Nordisk Foundation (Grant number NNF14CC0001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jesper V. Olsen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Jersie-Christensen, R.R., Sultan, A., Olsen, J.V. (2016). Simple and Reproducible Sample Preparation for Single-Shot Phosphoproteomics with High Sensitivity. In: von Stechow, L. (eds) Phospho-Proteomics. Methods in Molecular Biology, vol 1355. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-3049-4_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3049-4_17

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-3048-7

  • Online ISBN: 978-1-4939-3049-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics