Skip to main content

SILAC-Based Temporal Phosphoproteomics

  • Protocol
  • First Online:
Stable Isotope Labeling by Amino Acids in Cell Culture (SILAC)

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1188))

Abstract

In recent years, thanks to advances in Mass Spectrometry (MS)-based quantitative proteomics, studies on signaling pathways have moved from a detailed description of individual components to system-wide analysis of entire signaling cascades, also providing spatio-temporal views of intracellular pathways. Quantitative proteomics that combines stable isotope labeling by amino acid in cell culture (SILAC) with enrichment strategies for post-translational modification-bearing peptides and high-performance tandem mass spectrometry represents a powerful and unbiased approach to monitor dynamic signaling events. Here we provide an optimized SILAC-based proteomic workflow to analyze temporal changes in phosphoproteomes, which involve a generic three step enrichment protocol for phosphopeptides. SILAC-labeled peptides from digested whole cell lysates are as a first step enriched for phosphorylated tyrosines by immunoaffinity and then further enriched for phosphorylated serine/threonine peptides by strong cation exchange in combination with titanium dioxide-beads chromatography. Analysis of enriched peptides on Orbitrap-based MS results in comprehensive and accurate reconstruction of temporal changes of signaling networks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Schlessinger J (2000) Cell signaling by receptor tyrosine kinases. Cell 103(2):211–225

    Article  CAS  PubMed  Google Scholar 

  2. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144(5):646–674

    Article  CAS  PubMed  Google Scholar 

  3. Cohen P (2001) The role of protein phosphorylation in human health and disease. The Sir Hans Krebs Medal Lecture. Eur J Biochem 268(19):5001–5010

    Article  CAS  PubMed  Google Scholar 

  4. Choudhary C, Mann M (2010) Decoding signalling networks by mass spectrometry-based proteomics. Nat Rev Mol Cell Biol 11(6):427–439

    Article  CAS  PubMed  Google Scholar 

  5. Rigbolt KT, Blagoev B (2012) Quantitative phosphoproteomics to characterize signaling networks. Semin Cell Dev Biol 23(8):863–871

    Article  CAS  PubMed  Google Scholar 

  6. Dengjel J, Kratchmarova I, Blagoev B (2009) Receptor tyrosine kinase signaling: a view from quantitative proteomics. Mol Biosyst 5(10):1112–1121

    Article  CAS  PubMed  Google Scholar 

  7. Luber CA, Cox J, Lauterbach H et al (2010) Quantitative proteomics reveals subset-specific viral recognition in dendritic cells. Immunity 32(2):279–289

    Article  CAS  PubMed  Google Scholar 

  8. Ong SE, Mann M (2006) A practical recipe for stable isotope labeling by amino acids in cell culture (SILAC). Nat Protoc 1(6):2650–2660

    Article  CAS  PubMed  Google Scholar 

  9. Ow SY, Salim M, Noirel J et al (2009) iTRAQ underestimation in simple and complex mixtures: “the good, the bad and the ugly”. J Proteome Res 8(11):5347–5355

    Article  CAS  PubMed  Google Scholar 

  10. Boersema PJ, Foong LY, Ding VM et al (2010) In-depth qualitative and quantitative profiling of tyrosine phosphorylation using a combination of phosphopeptide immunoaffinity purification and stable isotope dimethyl labeling. Mol Cell Proteomics 9(1):84–99

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Ong SE, Blagoev B, Kratchmarova I et al (2002) Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol Cell Proteomics 1(5):376–386

    Article  CAS  PubMed  Google Scholar 

  12. Olsen JV, Blagoev B, Gnad F et al (2006) Global, in vivo, and site-specific phosphorylation dynamics in signaling networks. Cell 127(3):635–648

    Article  CAS  PubMed  Google Scholar 

  13. Rigbolt KT, Prokhorova TA, Akimov V et al (2011) System-wide temporal characterization of the proteome and phosphoproteome of human embryonic stem cell differentiation. Sci Signal 4(164):rs3

    Article  PubMed  Google Scholar 

  14. Rikova K, Guo A, Zeng Q et al (2007) Global survey of phosphotyrosine signaling identifies oncogenic kinases in lung cancer. Cell 131(6):1190–1203

    Article  CAS  PubMed  Google Scholar 

  15. Matsuoka S, Ballif BA, Smogorzewska A et al (2007) ATM and ATR substrate analysis reveals extensive protein networks responsive to DNA damage. Science 316(5828):1160–1166

    Article  CAS  PubMed  Google Scholar 

  16. Nuhse TS, Stensballe A, Jensen ON et al (2003) Large-scale analysis of in vivo phosphorylated membrane proteins by immobilized metal ion affinity chromatography and mass spectrometry. Mol Cell Proteomics 2(11):1234–1243

    Article  PubMed  Google Scholar 

  17. Andersson L, Porath J (1986) Isolation of phosphoproteins by immobilized metal (Fe3+) affinity chromatography. Anal Biochem 154(1):250–254

    Article  CAS  PubMed  Google Scholar 

  18. Larsen MR, Thingholm TE, Jensen ON et al (2005) Highly selective enrichment of phosphorylated peptides from peptide mixtures using titanium dioxide microcolumns. Mol Cell Proteomics 4(7):873–886

    Article  CAS  PubMed  Google Scholar 

  19. Olsen JV, Macek B (2009) High accuracy mass spectrometry in large-scale analysis of protein phosphorylation. Methods Mol Biol 492:131–142

    Article  CAS  PubMed  Google Scholar 

  20. Choudhary C, Kumar C, Gnad F et al (2009) Lysine acetylation targets protein complexes and co-regulates major cellular functions. Science 325(5942):834–840

    Article  CAS  PubMed  Google Scholar 

  21. Hunter T (2009) Tyrosine phosphorylation: thirty years and counting. Curr Opin Cell Biol 21(2):140–146

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Blagoev B, Ong SE, Kratchmarova I et al (2004) Temporal analysis of phosphotyrosine-dependent signaling networks by quantitative proteomics. Nat Biotechnol 22(9):1139–1145

    Article  CAS  PubMed  Google Scholar 

  23. Zarei M, Sprenger A, Metzger F et al (2011) Comparison of ERLIC-TiO2, HILIC-TiO2, and SCX-TiO2 for global phosphoproteomics approaches. J Proteome Res 10(8):3474–3483

    Article  CAS  PubMed  Google Scholar 

  24. Olsen JV, Schwartz JC, Griep-Raming J et al (2009) A dual pressure linear ion trap Orbitrap instrument with very high sequencing speed. Mol Cell Proteomics 8(12):2759–2769

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Kelstrup CD, Young C, Lavallee R et al (2012) Optimized fast and sensitive acquisition methods for shotgun proteomics on a Quadrupole Orbitrap mass spectrometer. J Proteome Res 11(6):3487–3497

    Article  CAS  PubMed  Google Scholar 

  26. Michalski A, Damoc E, Hauschild JP et al (2011) Mass spectrometry-based proteomics using Q Exactive, a high-performance benchtop quadrupole Orbitrap mass spectrometer. Mol Cell Proteomics 10(9):M111.011015

    Article  PubMed Central  PubMed  Google Scholar 

  27. Cox J, Mann M (2008) MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat Biotechnol 26(12):1367–1372

    Article  CAS  PubMed  Google Scholar 

  28. Cox J, Matic I, Hilger M et al (2009) A practical guide to the MaxQuant computational platform for SILAC-based quantitative proteomics. Nat Protoc 4(5):698–705

    Article  CAS  PubMed  Google Scholar 

  29. Cox J, Neuhauser N, Michalski A et al (2011) Andromeda: a peptide search engine integrated into the MaxQuant environment. J Proteome Res 10(4):1794–1805

    Article  CAS  PubMed  Google Scholar 

  30. Olsen JV, Macek B, Lange O et al (2007) Higher-energy C-trap dissociation for peptide modification analysis. Nat Methods 4(9):709–712

    Article  CAS  PubMed  Google Scholar 

  31. Nagaraj N, D’Souza RC, Cox J et al (2010) Feasibility of large-scale phosphoproteomics with higher energy collisional dissociation fragmentation. J Proteome Res 9(12):6786–6794

    Article  CAS  PubMed  Google Scholar 

  32. Rappsilber J, Mann M, Ishihama Y (2007) Protocol for micro-purification, enrichment, pre-fractionation and storage of peptides for proteomics using StageTips. Nat Protoc 2(8):1896–1906

    Article  CAS  PubMed  Google Scholar 

  33. Ishihama Y, Rappsilber J, Andersen JS et al (2002) Microcolumns with self-assembled particle frits for proteomics. J Chromatogr A 979(1–2):233–239

    Article  CAS  PubMed  Google Scholar 

  34. Geiger T, Cox J, Ostasiewicz P et al (2011) Super-SILAC mix for quantitative proteomics of human tumor tissue. Nat Methods 7(5):383–385

    Article  Google Scholar 

  35. Rigbolt KT, Blagoev B (2010) Proteome-wide quantitation by SILAC. Methods Mol Biol 658:187–204

    Article  CAS  PubMed  Google Scholar 

  36. Nielsen ML, Vermeulen M, Bonaldi T et al (2008) Iodoacetamide-induced artifact mimics ubiquitination in mass spectrometry. Nat Methods 5(6):459–460

    Article  CAS  PubMed  Google Scholar 

  37. Kelstrup CD, Hekmat O, Francavilla C et al (2011) Pinpointing phosphorylation sites: quantitative filtering and a novel site-specific x-ion fragment. J Proteome Res 10(7):2937–2948

    Article  CAS  PubMed  Google Scholar 

  38. Sugiyama N, Masuda T, Shinoda K et al (2007) Phosphopeptide enrichment by aliphatic hydroxy acid-modified metal oxide chromatography for nano-LC-MS/MS in proteomics applications. Mol Cell Proteomics 6(6):1103–1109

    Article  CAS  PubMed  Google Scholar 

  39. Zhou H, Low TY, Hennrich ML et al (2011) Enhancing the identification of phosphopeptides from putative basophilic kinase substrates using Ti (IV) based IMAC enrichment. Mol Cell Proteomics 10(10):M110.006452

    Article  PubMed Central  PubMed  Google Scholar 

  40. Francavilla C, Rigbolt KT, Emdal KB et al (2013) Functional proteomics defines the molecular switch underlying FGF receptor trafficking and cellular outputs. Mol Cell 51(6):707–722

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank all members of the Department of Proteomics at the Novo Nordisk Foundation Center for Protein Research for fruitful discussion. The work was supported by the seventh framework program of the European Union (Contract no. 262067—PRIME-XS). The NNF Center for Protein Research was supported by a generous donation from the Novo Nordisk Foundation. Dr. Chiara Francavilla was supported by Marie Curie and EMBO Long-Term postdoctoral fellowships. Dr. Blagoev was supported by the Lundbeck Foundation.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Blagoy Blagoev or Jesper V. Olsen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Francavilla, C., Hekmat, O., Blagoev, B., Olsen, J.V. (2014). SILAC-Based Temporal Phosphoproteomics. In: Warscheid, B. (eds) Stable Isotope Labeling by Amino Acids in Cell Culture (SILAC). Methods in Molecular Biology, vol 1188. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1142-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1142-4_10

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1141-7

  • Online ISBN: 978-1-4939-1142-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics