Skip to main content

Growth, Modeling and Remodeling of Bone

  • Chapter
Skeletal Tissue Mechanics

Abstract

The preceding chapter provided a general description of the structure and biology of bone, cartilage, tendons and ligaments. In this chapter, we will learn how bones grow, are sculpted by modeling and continuously renewed by remodeling, and repair when fractured. We will also learn how these processes in bone can be quantified, and what assumptions we make when attempting to put numbers to dynamic processes.

[H]ow curious the hand of Heaven has been in the Framing and Ordering of this Timber-work of our Bodies.

Osteologia Nova, Clopton Havers (1657–1702) (Havers 1691)

…there is a perpetual Waſte and Renewal of the Particles which compoſe the ſolid Fibres of Bones;…the Addition from the Fluids exceeding the Waſte during the Growth of the Bones; the Renewal and waſte keeping pretty near par in adult middle Age; and the waſte exceeding the Supply from the Liquors in old Age; as is demonſtrable from their Weight…

Anatomy of the Human Bones, Alexander Monro (primus), 1697–1767 (Monro A. The anatomy of the human bones and nerves and lacteal sac and duct. Dublin 1776)

Good mathematical models don’t start with the mathematics but with a deep study of certain natural phenomena.

Bull. Amer. Math. Soc., Stephen Smale, 1930—(Smale 1978)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Osteopetrosis (literally, “stone-bones”) is a disease caused by an inability to produce sufficient osteoclasts. Thus, normal resorption and remodeling cannot occur, and the patient’s bones are much harder and more dense than usual. It can be treated by transplanting marrow containing osteoclast pre-cursor cells from a normal person to the patient.

  2. 2.

    The periodontal ligament is the tissue that supports each tooth in its socket. It is the interface between tooth and bone, and is the source of cells that excavate or fill in bone when teeth are moved naturally or by an orthodontist.

  3. 3.

    In his 1965 paper, Kerley underestimated his microscopic field area (Kerley and Ubelaker 1978). We have corrected for this in Table 3.10, but not in Fig. 3.22, where the ordinate values should be multiplied by 0.60. Figure 3.23 needs no correction as it represents fractional area.

    Figure 3.22
    figure 22

    Osteon density vs. age for a sample of human femurs (Kerley 1965).

    Figure 3.23
    figure 23

    Percent of cortex that is primary bone vs. age for a sample of human femurs (Kerley 1965).

References

  • Abbott S, Trinkaus E, Burr DB. Dynamic bone remodeling in later Pleistocene fossil hominids. Am J Phys Anthropol. 1996;99:585–601.

    Article  CAS  PubMed  Google Scholar 

  • Ahlqvist J, Damsten O. A modification of Kerley’s method for the microscopic determination of age in human bone. J Forensic Sci. 1969;14:205–13.

    CAS  PubMed  Google Scholar 

  • Allen MR, McNerny EMB, Organ JM, Wallace JM. True gold or pyrite: a review of reference point indentation for assessing bone mechanical properties in vivo. J Bone Miner Res. 2015;30:1539–50.

    Article  PubMed  Google Scholar 

  • Amsel S, Maniatis A, Tavassoli M, Crosby WH. The significance of intramedullary cancellous bone in the repair of bone marrow tissue. Anat Rec. 1969;164:101–11.

    Article  CAS  PubMed  Google Scholar 

  • Baron R, Tross R, Vignery A. Evidence of sequential remodeling in rat trabecular bone morphology, dynamic histomorphometry, and changes during skeletal maturation. Anat Rec. 1984;208:137–45.

    Article  CAS  PubMed  Google Scholar 

  • Barou O, Lafage-Proust MH, Palle S, Vico L, Alexandre C. Effects of immobilization on preosteoblast proliferation assessed histomorphometrically using BRDU uptake on epon-embedded rat bone (abstract). Bone. 1996;19:131S.

    Article  Google Scholar 

  • Bassett CAL, Mitchell SN, Gaston SR. Treatment of ununited tibial diaphyseal fractures with pulsing electromagnetic fields. J Bone Joint Surg. 1981;63A:511–23.

    Google Scholar 

  • Bassett EJ, Keith MS, Armelagos GJ, Martin DL, Villanueva AR. Tetracycline-labeled human bone from ancient Sudanese Nubia (A.D. 350). Science. 1980;209:1532–4.

    Article  CAS  PubMed  Google Scholar 

  • Bliziotes M, Sibonga JD, Turner RT, Orwoll E. Periosteal remodeling at the femoral neck in nonhuman primates. J Bone Miner Res. 2006;21:1060–7.

    Article  PubMed  Google Scholar 

  • Bouvier M, Ubelaker DH. A comparison of two methods for the microscopic determination of age at death. Am J Phys Anthropol. 1977;46:391–4.

    Article  CAS  PubMed  Google Scholar 

  • Boyde A. Scanning electron microscope studies of bone. In: Bourne GH, editor. The biochemistry and physiology of bone. New York: Academic Press; 1972.

    Google Scholar 

  • Bridges D, Randall C, Hansma PK. A new device for performing reference point indentation without a reference probe. Rev Sci Instrum. 2012;83(4):044301.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Brighton CT, Friedenberg ZB, Black J. Evaluation of the use of constant current in the treatment of nonunion. In: Brighton CT, Black J, Pollack SR, editors. Electrical properties of bone and cartilage. Experimental effects and clinical applications. New York: Grune & Stratton; 1979. p. 519–46.

    Google Scholar 

  • Burny F, Donkerwolcke M, Bourgois R, Domb M, Saric O. Twenty years experience in fracture healing measurements with strain gauges. Orthopedics. 1984;7:1823–9.

    CAS  PubMed  Google Scholar 

  • Burr DB. Estimated intracortical bone turnover in the femur of growing macaques: implications for their use as models in skeletal pathology. Anat Rec. 1992;232:180–9.

    Article  CAS  PubMed  Google Scholar 

  • Burr DB, Guillot III G. Almost invisible, often ignored: periosteum, the living lace of bone. Medicographia. 2012;34:221–7.

    Google Scholar 

  • Burr DB, Ruff CB, Thompson DD. Patterns of skeletal histologic change through time: comparison of an archaic native American population with modern populations. Anat Rec. 1990;226:307–13.

    Article  CAS  PubMed  Google Scholar 

  • Burstein AH, Frankel VH. A standard test for laboratory animal bone. J Biomech. 1971;4:155–8.

    Article  CAS  PubMed  Google Scholar 

  • Calvi LM, Bromberg O, Rhee Y, Lee R, Weber JM, Smith JN, Basil M, Frisch BJ, Bellido T. Osteoblastic expansion induced by parathyroid hormone receptor signaling in murine osteocytes is not sufficient to increase hematopoietic stem cells. Blood. 2012;119:2489–99.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Carter DR, Blenman PR, Beaupre GS. Correlations between mechanical stress history and tissue differentiation in initial fracture healing. J Orthop Res. 1988;6:736–48.

    Article  CAS  PubMed  Google Scholar 

  • Coccia PF, Krivit W, Cervenka J, Clawson CC, Kersey JH, Kim TH, Nesbit ME, Ramsay NKC. Successful bone marrow transplantation for infantile malignant osteopetrosis. N Engl J Med. 1980;302:701–8.

    Article  CAS  PubMed  Google Scholar 

  • Cohen J, Harris WH. The three-dimensional anatomy of Haversian systems. J Bone Joint Surg. 1958;40A:419–34.

    Google Scholar 

  • Collier RJ, Donarski R. Non-invasive method of measuring resonant frequency of a human tibia in vivo. J Biomed Eng. 1987;9:329–31.

    Article  CAS  PubMed  Google Scholar 

  • Cunningham JL, Evans M, Kenwright J. Measurement of fracture movement in patients treated with unilateral external skeletal fixation. J Biomed Eng. 1989;11:118–22.

    Article  CAS  PubMed  Google Scholar 

  • Day JS, Ding M, Odgaard A, et al. Parallel plate model for trabecular bone exhibits volume fraction-dependent bias. Bone. 2000;27(5):715–20.

    Article  CAS  PubMed  Google Scholar 

  • Dempster DW, Compston JE, Drezner MK, Glorieux FH, Kanis JA, Malluche H, et al. Standardized nomenclature, symbols and units for bone histomorphometry: a 2012 update on the report of the ASBMR Histomorphometry Nomenclature Committee. J Bone Miner Res. 2013;28:1–16.

    Article  Google Scholar 

  • Diez-Perez A, Güerri R, Nogues X, et al. Microindentation for in vivo measurement of bone tissue mechanical properties in humans. J Bone Miner Res. 2010;25:1877–85.

    Article  PubMed Central  PubMed  Google Scholar 

  • Eriksson C. Streaming potentials and other water dependent effects in mineralized tissues. Ann N Y Acad Sci. 1974;238:321–38.

    Article  CAS  PubMed  Google Scholar 

  • Evans FG, Bang S. Differences and relationships between the physical properties and microscopic structure of human femoral, tibial and fibular cortical bone. Am J Anat. 1967;120:79–88.

    Article  Google Scholar 

  • Ferron M, Wei J, Yoshizawa T, Del Fattore A, DePinho RA, Teti A, Ducy P, Karsenty G. Insulin signaling in osteoblasts integrates bone remodeling and energy metabolism. Cell. 2010;142:296–308.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Frost HM. Preparation of thin undecalcified bone sections by a rapid manual method. Stain Technol. 1958;33:272.

    Google Scholar 

  • Frost HM. Measurement of bone formation in a 57-year-old man by means of tetracycline. Henry Ford Hosp Med Bull. 1960a;8:212–9.

    CAS  PubMed  Google Scholar 

  • Frost HM. Observations on osteoid seams: the existence of a resting state. Henry Ford Hosp Med Bull. 1960b;8:220–4.

    CAS  PubMed  Google Scholar 

  • Frost HM. Measurement of osteocytes per unit volume and volume components of osteocytes and canaliculae in man. Henry Ford Hosp Med Bull. 1960c;8:208–11.

    CAS  PubMed  Google Scholar 

  • Frost HM. Mathematical elements of lamellar bone remodelling. Springfield: Thomas; 1964.

    Google Scholar 

  • Frost HM. Tetracycline-based histological analysis of bone remodeling. Calcif Tissue Res. 1969;3:211–37.

    Article  CAS  PubMed  Google Scholar 

  • Frost HM. Bone histomorphometry: correction of the labeling “escape error”. In: Recker RR, editor. Bone histomorphometry: techniques and interpretation. Boca Raton: CRC Press; 1983.

    Google Scholar 

  • Frost HM. Secondary osteon populations: an algorithm for estimating the missing osteons. Yearb Phys Anthropol. 1987;30:239–54.

    Article  Google Scholar 

  • Fuchs RK, Allen MR, Ruppel ME, Dab T, Phipps RJ, Miller LM, Burr DB. In situ examination of the time-course for secondary mineralization of Haversian bone using synchrotron Fourier transform infrared microspectroscopy. Matrix Biol. 2008;27:34–41.

    Article  CAS  PubMed  Google Scholar 

  • Fukada E, Yasuda I. On the piezoelectric effect of bone. J Physical Soc Japan. 1957;10:1158–69.

    Article  Google Scholar 

  • Fuzele K, Riddle RC, DiGirolamo DJ, Cao X, Wan C, Chen D, Faugere M-C, Aja S, Hussain MA, Brüning JC, Clemens TL. Insulin receptor signaling in osteoblasts regulates postnatal bone acquisition and body composition. Cell. 2010;142:309–19.

    Article  CAS  Google Scholar 

  • Gerlanc M, Haddad D, Hyatt GW, Lanloh HT, Hilaire P. Ultrasonic study of normal and fractured bone. Clin Orthop Relat Res. 1975;111:175–80.

    Article  PubMed  Google Scholar 

  • Harris WH. A microscopic method of determining rates of bone growth. Nature. 1960;188:1038–9.

    Article  CAS  PubMed  Google Scholar 

  • Hattner R, Frost HM. Mean skeletal age: its calculation and theoretical effects on skeletal tracer physiology and on the physical characteristics of bone. Henry Ford Hosp Med Bull. 1963;11:201–16.

    CAS  PubMed  Google Scholar 

  • Havers C. Osteologia nova, or some new observations of the bones, and the parts belonging to them, with the manner of their accretion, and nutrition, communicated to the royal society in several discourses. London: Samuel Smith; 1691.

    Google Scholar 

  • Holtrop ME. Light and electron microscopic structure of bone-forming cells. In: Hall BK, editor. Bone, vol. 1. The osteoblast and osteocyte. Caldwell, NJ: Telford Press; 1990. p. 1–39.

    Google Scholar 

  • Ineke DCJ, Vermeer JAF, Bloemen V, Stap JM, Everts V. Osteoclast fusion and fission. Calcif Tissue Int. 2012;90:515–22.

    Article  CAS  Google Scholar 

  • Jaworski JFG, Hooper C. Study of cell kinetics within evolving secondary Haversian systems. J Anat. 1980;131:91–102.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Jaworski ZF, Lok E. The rate of osteoclastic bone erosion in Haversian remodeling sites of adult dog’s rib. Calcif Tissue Res. 1972;10:103–12.

    Article  CAS  PubMed  Google Scholar 

  • Jaworski ZFG, Duck B, Sekaly G. Kinetics of osteoclasts and their nuclei in evolving secondary Haversian systems. J Anat. 1981;133:397–405.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Johnson LC. Morphologic analysis in pathology: the kinetics of disease and general biology in bone. In: Frost HM, editor. Bone biodynamics. Boston: Little, Brown; 1964.

    Google Scholar 

  • Kelin M, Frost HM. Evidence of periodic changes in the rate of formation of individual osteons in human bone. Henry Ford Hosp Med Bull. 1964;12:565–72.

    Google Scholar 

  • Kerley ER. The microscopic determination of age in human bone. Am J Phys Anthropol. 1965;23:149–64.

    Article  CAS  PubMed  Google Scholar 

  • Kerley ER, Ubelaker DH. Revision in the microscopic method of estimating age at death in human cortical bone. Am J Phys Anthropol. 1978;49:545–6.

    Article  CAS  PubMed  Google Scholar 

  • Kimmel DB. A computer simulation of the mature skeleton. Bone. 1985;6:369–72.

    Article  CAS  PubMed  Google Scholar 

  • Kimmel DB, Jee WSS. A quantitative histologic study of bone turnover in young adult beagles. Anat Rec. 1982;203:31–45.

    Article  CAS  PubMed  Google Scholar 

  • Krumme H, Guenay M, Nagel H-H, Delling G. Computerized simulation of bone remodeling: graphic demonstration of dynamic processes. Metab Bone Dis Relat Res. 1984;5:253–7.

    Article  CAS  PubMed  Google Scholar 

  • Lee S-H, Kim TS, Choi Y, Lorenzo J. Osteoimmunology: cytokines and the skeletal system. BMB Rep. 2008;41:495–510.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Li XJ, Jee WSS, Chow SY, Woodbury DM. Adaptation of cancellous bone to aging and immobilization: a single photon absorptiometry and histomorphometric study. Anat Rec. 1990;227:12–24.

    Article  CAS  PubMed  Google Scholar 

  • Li CY, Price C, Delisser K, Nasser P, Laudier D, Clement M, Jepsen KJ, Schaffler MB. Long-term disuse osteoporosis seems less sensitive to bisphosphonate treatment than other osteoporosis. J Bone Miner Res. 2005;20:117–24.

    Article  CAS  PubMed  Google Scholar 

  • Liu XS, Shane E, McMahon DJ, Guo XE. Individual trabecula segmentation (ITS)-based morphological analysis of microscale images of human tibial trabecular bone at limited spatial resolution. J Bone Miner Res. 2011;26:2184–93.

    Article  PubMed  Google Scholar 

  • Lorenzo J, Horowitz M, Choi Y. Osteoimmunology: interactions of the bone and immune system. Endocr Rev. 2008;29:403–40.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Manson JD, Waters NE. Observations on the rate of maturation of the cat osteon. J Anat. 1965;99:539–49.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Martin RB. Porosity and specific surface of bone. Crit Rev Biomed Eng. 1984;10:179–222.

    CAS  PubMed  Google Scholar 

  • Martin RB. The usefulness of mathematical models for bone remodeling. Yearb Phys Anthropol. 1985;28:227–36.

    Article  Google Scholar 

  • Martin RB. Interpretation of fluorochrome labeling results in dynamic remodeling experiments. Trans Orthop Res Soc. 1986;11:247.

    Google Scholar 

  • Martin RB. Osteonal remodeling in response to screw implantation in canine femora. J Orthop Res. 1987;5:445–52.

    Article  CAS  PubMed  Google Scholar 

  • Martin RB. Label escape theory revisited: the effects of resting periods and section thickness. Bone. 1989;10:255–64.

    Article  CAS  PubMed  Google Scholar 

  • Martin RB. On the significance of remodeling space and activation rate changes in bone remodeling. Bone. 1991;12:391–400.

    Article  CAS  PubMed  Google Scholar 

  • Martin RB, Burr DB. The structure, function, and adaptation of compact bone. New York: Raven; 1989.

    Google Scholar 

  • Martin RB, Dannucci GA, Hood SJ. Bone apposition rate differences in osteonal and trabecular bone. Trans Orthop Res Soc. 1987;12:178.

    Google Scholar 

  • Martin RB, Chow BD, Lucas PA. Bone marrow fat content in relation to bone remodeling and serum chemistry in intact and ovariectomized dogs. Calcif Tissue Int. 1990;46:189–94.

    Article  CAS  PubMed  Google Scholar 

  • Milch RA, Rall DP, Tobie JE, Albrecht JM, Trivers G. Florescence of tetracycline antibiotics in bone. J Bone Joint Surg. 1958;40A:897–910.

    CAS  Google Scholar 

  • Minaire P, Edouard C, Arlot M, Meunier P. Marrow changes in paraplegic patients. Calcif Tissue Int. 1984;36:338–40.

    Article  CAS  PubMed  Google Scholar 

  • Mollon B, da Silva V, Busse JW, Einhorn TA, Bhandari M. Electrical stimulation for long-bone fracture-healing: a meta-analysis of randomized controlled trials. J Bone Joint Surg. 2008;90-A:2322–30.

    Article  Google Scholar 

  • Monro A. The anatomy of the human bones, nerves and lacteal sac and duct. Dublin; 1776.

    Google Scholar 

  • Mouton PR. Unbiased stereology: a concise guide. Baltimore: Johns Hopkins University Press; 2011.

    Google Scholar 

  • Mullender MG, van der Meer DD, Huiskes R, Lips P. Osteocyte density changes in aging and osteoporosis. Bone. 1996;18:109–13.

    Article  CAS  PubMed  Google Scholar 

  • Nunamaker DM, Butterweck DM, Provost MT. Fatigue fractures in thoroughbred racehorses: relationships with age, peak bone strain, and training. J Orthop Res. 1990;8:604–11.

    Article  CAS  PubMed  Google Scholar 

  • Orwoll ES. Perspective: toward an expanded understanding of the role of the periosteum in skeletal health. J Bone Miner Res. 2003;18:949–54.

    Article  PubMed  Google Scholar 

  • Owen M. The origin of bone cells in the post-natal organism. Arthritis Rheum. 1980;23:1073–9.

    Article  CAS  PubMed  Google Scholar 

  • Parfitt AM. Quantum concept of bone remodeling and turnover: implications for the pathogenesis of osteoporosis. Calcif Tissue Int. 1979;28:1–5.

    Article  CAS  PubMed  Google Scholar 

  • Parfitt AM. The physiologic and clinical significance of bone histomorphometric data. In: Recker RR, editor. Bone histomorphometry techniques and interpretation. Boca Raton: CRC Press; 1983. p. 143–223.

    Google Scholar 

  • Parfitt AM, Drezner MK, Glorieux FH, Kanis JA, Malluche H, Meunier PJ, Ott SM, Recker RR. Bone histomorphometry: standardization of nomenclature, symbols, and units. J Bone Miner Res. 1987;2(6):595–610.

    Article  CAS  PubMed  Google Scholar 

  • Polig E, Jee WSS. Bone age and remodeling: a mathematical treatise. Calcif Tissue Int. 1987;41:130–6.

    Article  CAS  PubMed  Google Scholar 

  • Polig E, Jee WSS. A model of osteon closure in cortical bone. Calcif Tissue Int. 1990;47:261–9.

    Article  CAS  PubMed  Google Scholar 

  • Recker RR, Kimmel DB, Dempster D, Weinstein RS, Wronski TJ, Burr DB. Issues in modern bone histomorphometry. Bone. 2011;49:955–64.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Reeve J. A stochastic analysis of iliac trabecular bone dynamics. Clin Orthop Relat Res. 1986;213:264–78.

    PubMed  Google Scholar 

  • Roberts WE, Mozsary PG, Klingler E. Nuclear size as a cell-kinetic marker for osteoblast differentiation. Am J Anat. 1982;165:373–84.

    Article  CAS  PubMed  Google Scholar 

  • Roberts WE, Morey-Holton E, Gonsalves MR. Sensitivity of bone cell populations to weightlessness and simulated weightlessness. In: The gravity relevance in bone mineralisation processes. Paris: European Space Agency; 1984.

    Google Scholar 

  • Roberts WE, Wood HB, Burk DT. Vascularly oriented differentiation gradient of osteoblast precursor cells in rat periodontal ligament. J Periodontal Res. 1987;22:461–7.

    Article  CAS  PubMed  Google Scholar 

  • Robling AG, Niziolek PJ, Baldridge LA, et al. Mechanical stimulation of bone in vivo reduces osteocyte expression of Sost/Sclerostin. J Biol Chem. 2008;283:5866–75.

    Article  CAS  PubMed  Google Scholar 

  • Schock CC, Noyes FR, Villanueva AR. Measurement of Haversian bone remodeling by means of tetracycline labeling in rib of rhesus monkeys. Henry Ford Hosp Med Bull. 1972;20:131–44.

    CAS  Google Scholar 

  • Smale S. Book review: catastrophe theory: selected papers. Bull Am Math Soc. 1978;84:1360–8.

    Article  Google Scholar 

  • Stout SD, Gehlert SJ. The relative accuracy and reliability of histological aging methods. Forensic Sci Int. 1980;15:181–90.

    Article  CAS  PubMed  Google Scholar 

  • Stout SD, Paine RR. Brief communication: bone remodeling rates: a test of an algorithm for estimating missing osteons. Am J Phys Anthropol. 1994;93:123–9.

    Article  CAS  PubMed  Google Scholar 

  • Streeter M, Stout S, Trinkaus E, Burr D. Brief communication: bone remodeling rates in Pleistocene humans are not slower than the rates observed in modern populations: a reexamination of Abbott et al. (1996). Am J Phys Anthropol. 2010;141:315–8.

    PubMed  Google Scholar 

  • Takayanagi H. Osteoimmunology: shared mechanisms and crosstalk between the immune and bone systems. Nat Rev Rheumatol. 2007;7:292–304.

    CAS  Google Scholar 

  • Tam CS, Harrison JE, Heersche JNM, Jones G, Wilson DR, Parsons JA, Murray TM. Short term variation in the rate of apposition of mineralized bone matrix in small animals. In: Jee WSS, Parfitt AM, editors. Bone histomorphometry. Third international workshop. Paris: Societe Nouvelle Publications Medicales et Dentaires; 1980.

    Google Scholar 

  • Tappen NC. Three dimensional studies of resorption spaces and developing osteons. Am J Anat. 1977;149:301–32.

    Article  CAS  PubMed  Google Scholar 

  • Thompson DD. The core technique in the determination of age at death in skeletons. J Forensic Sci. 1979;44:902–15.

    Google Scholar 

  • Turner CH, Boivin G, Meunier PJ. A mathematical model for fluoride uptake by the skeleton. Calcif Tissue Int. 1993;52:130–8.

    Article  CAS  PubMed  Google Scholar 

  • Ubelaker DH. Human skeletal remains. Washington, DC: Smithsonian Institution Press; 1989.

    Google Scholar 

  • Vincent J. Recherches sur la Constitution de l’Os Adult. Brussels: Arscia; 1955.

    Google Scholar 

  • Walker RA, Lovejoy CO, Meindl RS. Histomorphological and geometric properties of human femoral cortex in individuals over 50: implications for histomorphological determination of age-at-death. Am J Hum Biol. 1994;6:659–67.

    Article  Google Scholar 

  • Weinhold PS, Gilbery JA, Woodard JC. The significance of transient changes in trabecular bone remodeling activation. Bone. 1994;15:577–84.

    Article  CAS  PubMed  Google Scholar 

  • White AA, Panjabi MM, Southwick WO. The four biomechanical stages of fracture repair. J Bone Joint Surg. 1977;59A:188–92.

    Google Scholar 

  • Wu K, Schubeck KE, Frost HM, Villanueva AR. Haversian bone formation rates determined by a new method in a mastodon, and in human diabetes mellitus and osteoporosis. Calcif Tissue Int. 1970;22:204–19.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Martin, R.B., Burr, D.B., Sharkey, N.A., Fyhrie, D.P. (2015). Growth, Modeling and Remodeling of Bone. In: Skeletal Tissue Mechanics. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-3002-9_3

Download citation

Publish with us

Policies and ethics