Skip to main content
Log in

A mathematical model for fluoride uptake by the skeleton

  • Laboratory Investigations
  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Summary

A mathematical model was developed that prediets fluoride accumulation and clearance from the skeleton based upon fluoride bioavailability, bone remodeling rate, and the fluoride binding characteristics of bone. It was assumed that fluoride binds to bone in a nonlinear fashion such that a smaller percentage of fluoride is bound to bone if fluoride intake is increased to high levels. Bone resorption rate was assumed to be proportional to the solubility of hydroxyfluorapatite which is inversely related to bone fluoride content. The predictions made by the model compared favorably with experimental results from fluoride uptake and clearance studies. Parametric studies done using the model showed the following: (1) fluoride can be cleared from the skeleton by bone remodeling, but fluoride clearance takes over four times longer than does fluoride uptake; and (2) fluoride uptake by the skeleton was positively associated with bone remodeling rate. However, the concentration of fluoride in newly formed bone does not decrease with reduced remodeling rates and surpasses 10,000 ppm for intakes of fluoride greater than 9 mg/day. For osteoporosis, daily dose and duration of fluoride treatment should be selected to avoid reaching a toxic cumulative bone fluoride content.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mertz W (1981) The essential trace elements. Science 213: 1332–1338

    Google Scholar 

  2. Boivin G, Meunier PJ (1990) Fluoride and bone: toxicological and therapeutic aspects. In: Cohen RD, Lewis B, Alberti KGMM, Denman AM (eds) The metabolic and molecular basis of acquired disease. Bailliere Tindall, London, pp 1803–1823

    Google Scholar 

  3. Jenkins GN (1990) The metabolism and effects of fluoride. In: Priest ND, Van De Vyver FL (eds) Trace metals and fluoride in bones and teeth. CRC Press, Boca Raton, FL, pp 142–173

    Google Scholar 

  4. Simonen O, Laitinen O (1985) Does fluoridation of drinking water prevent bone fragility and osteoporosis? Lancet 24: 432–434

    Google Scholar 

  5. Arnala I, Alhava EM, Kivivuori R, Kauranen P (1986) Hip fracture incidence not affected by fluoridation: osteofluorosis studied in Finland. Acta Orthop Scand 57: 344–348

    Google Scholar 

  6. Jacobsen SJ, Goldberg J, Miles TP, Brody JA, Stiers W, Rimm AA (1990) Regional variation in the incidence of hip fracture. JAMA 264: 500–502

    Google Scholar 

  7. Cooper C, Wickham CAC, Barker DJR, Jacobsen SJ (1991) Water fluoridation and hip fracture (letter). JAMA 166: 513–514

    Google Scholar 

  8. Sowers MR, Clark MK, Jannausch ML, Wallace RB (1991) A prospective study of bone mineral content and fracture in communities with differential fluoride exposure. Am J Epidemiol 133: 649–659

    Google Scholar 

  9. Gordon SL, Corbin SB (1992) Summary of workshop on drinking water fluoride influence on hip fracture and bone health. Osteoporosis Int 2: 109–117

    Google Scholar 

  10. Beary DF (1969) The effects of fluoride and low calcium on the physical properties of the rat femur. Anat Rec 164: 305–316

    Google Scholar 

  11. Faccini JM (1969) Fluoride and bone. Calcif Tissue Res 3: 1–16

    Google Scholar 

  12. Mosekilde L, Kragstrup J, Richards A (1987) Compressive strength, ash weight, and volume of vertebral trabecular bone in experimental fluorosis in pigs. Calcif Tissue Int 40: 318–322

    Google Scholar 

  13. Riggins RS, Zeman F, Moon D (1974) The effects of sodium fluoride on bone-breaking strength. Calcif Tissue Res 14: 283–289

    Google Scholar 

  14. Wolinsky I, Simkin A, Guggenheim K (1972) Effects of fluoride on metabolism and mechanical properties of rat bone. Am J Physiol 223: 46–50

    Google Scholar 

  15. Turner CH, Akhter MP, Heaney RP (1992) The effects of fluoridated water on bone strength. J Orthop Res 10: 581–587

    Google Scholar 

  16. Walsh WR, Guzelsu N (1991) Fluoride ion effect on interfacial bonding and mechanical properties of bone. J Biomechanics 24: 237

    Google Scholar 

  17. Riggins RS, Rucker RC, Chan MM, Zeman F, Beljan JR (1976) The effect of fluoride supplementation on the strength of osteopenic bone. Clin Orthop Rel Res 114: 352–357

    Google Scholar 

  18. Evans FG, Wood JL (1976) Mechanical properties and density of bone in a case of severe endemic fluorosis. Acta Orthop Scand 47: 489–495

    Google Scholar 

  19. Saville PD (1967) Water fluoridation: effect on bone fragility and skeletal calcium content in the rat. J Nutrition 91: 353–357

    Google Scholar 

  20. Henrikson P, Lutwak L, Krook L, Skogerboe R, Kallfelz F, Bélanger LF, Marier JR, Sheffy BE, Romanus B, Hirsch C (1970) Fluoride and nutritional osteoporosis: physicochemical data on bones from and experimental study in dogs. J Nutrition 100: 631–642

    Google Scholar 

  21. Nordenberg D, Simkin A, Gedalia I, Robin G (1971) The effect of sodium fluoride and sodium monofluorophosphate on the mechanical properties of normal and osteoporotic rat bone. Israel J Med Sci 7: 529–531

    Google Scholar 

  22. Rich C, Feist E (1970) The action of fluoride on bone. In: Vischer TL (ed) Fluoride in medicine. Hansltuker, Bern, pp 70–87

    Google Scholar 

  23. Farley JR, Wergedal JE, Baylink DJ (1983) Fluoride directly stimulates proliferation and alkaline phosphatase activity of bone forming cells. Science 227: 330–332

    Google Scholar 

  24. Wergedal JE, Lau KHW, Baylink DJ (1988) Fluoride and bovine bone extract influence cell proliferation and phosphatase activities in human bone cell cultures. Clin Orthop Rel Res 233: 274–282

    Google Scholar 

  25. Chavassieux P, Chenu C, Valentin-Opran A, Delmas PD, Boivin G, Chapuy MC, Meunier PJ (in press) In vitro exposure to sodium fluoride does not modify activity and proliferation of human osteoblastic cells in primary cultures. J Bone Miner Res

  26. Taves DR (1970) New approach to the treatment of bone disease with fluoride. Fed Proc 29: 1185–1187

    Google Scholar 

  27. Ekstrand J, Ehrnebo M, Boréus LO (1978) Fluoride bioavailability after intravenous and oral administration: importance of renal clearance and urine flow. Clin Pharmacol Ther 23: 329–337

    Google Scholar 

  28. Meunier PJ, Femenias M, Duboeuf F, Chapuy MC, Delmas PD (1989) Increased vertebral bone density in heavy drinkers of mineral water rich in fluoride. Lancet i: 152

    Google Scholar 

  29. Pak CYC, Sakhaee K, Zerwekh JE (1990) Effect of intermittent therapy with a slow-release fluoride preparation. J Bone Miner Res 5(suppl 1): S149-S155

    Google Scholar 

  30. Riggs BL, Hodgson SF, O'Fallon WM, Chao EYS, Wahner HW, Muhs JM, Cedel SL, Melton LJ (3rd) (1990) Effect of fluoride treatment on the fracture rate in postmenopausal women with osteoporosis. NEJM 322: 802–809

    Google Scholar 

  31. Hasling C, Nielsen HE, Melson F, Mosekilde L (1987) Safety of osteoporosis treatment with sodium fluoride, calcium phosphate and vitamin D. Min Electrolyte Metab 13: 96–103

    Google Scholar 

  32. Mamelle N, Meunier PJ, Dusan R, Guillaume M, Martin JL, Gaucher A, Prost A, Ziegler G, Netter P (1988) Risk-benefit ratio of sodium fluoride treatment in primary vertebral osteoporosis. Lancet ii: 361–365

    Google Scholar 

  33. Ekstrand J, Spak C-J (1990) Fluoride pharmacokinetics: its implications in the fluoride treatment of osteoporosis. J Bone Miner Res 5(suppl 1): S53-S61

    Google Scholar 

  34. O'Duffy JD, Wahner HW, O'Fallon WM, Johnson KA, Muhs JM, Beabout JW, Hodgson SF, Riggs BL (1986) Mechanism of acute lower extremity pain syndrome in fluoride-treated osteoporotic patients. Am J Med 80: 561–566

    Google Scholar 

  35. Nagant de Deuxchaisnes C, Devogelaer JP, Stein F (1990) Fluoride treatment for osteoporosis. Lancet ii: 48–49

    Google Scholar 

  36. Whitford GM (1990) The physiological and toxicological characteristics of fluoride. J Dent Res 69(special issue): 539–549

    Google Scholar 

  37. Polig E, Jee WSS (1987) Bone age and remodeling: a mathematical treatise. Calcif Tissue Int 41: 130–136

    Google Scholar 

  38. Burr DB, Martin RB, Schaffler MB, Radin EL (1985) Bone remodeling in response to in vivo fatigue microdamage. J Biomechanics 18: 189–200

    Google Scholar 

  39. Martin RB, Burr DB (1989) Structure function and adaptation of compact bone. Raven Press, New York

    Google Scholar 

  40. Okazaki M, Aoba T, Doi Y, Takahashi J, Moriwaki Y (1981) Solubility and crystallinity in relation to fluoride content of fluoridated hydroxyapatites. J Dent Res 60: 845–849

    Google Scholar 

  41. Moreno EC, Kresak M, Zahradnik RT (1977) Physicochemical aspects of fluoride-apatite systems relevant to the study of dental caries. Caries Res 11(suppl 1): 142–171

    Google Scholar 

  42. Okuda A, Kanehisa J, Heersche JNM (1990) The effects of sodium fluoride on the resorptive activity of isolated osteoclasts. J Bone Miner Res 5(suppl 1): S115-S120

    Google Scholar 

  43. Taylor ML, Maconnachie E, Frank K, Boyde A, Jones SJ (1990) The effect of fluoride on the resorption of dentine by osteoclasts in vitro. J Bone Miner Res 5(suppl 1): S121-S130

    Google Scholar 

  44. Webber DM, Braidman IP, Robertson WR, Anderson DC (1988) A quantitative cytochemical assay for osteoclast acid phosphatase activity in foetal rat calvaria. Histochemical J 20: 269–275

    Google Scholar 

  45. Whitford GM, Pashley DH, Reynolds KE (1979) Fluoride tissue distribution: short-term kinetics. Am J Physiol 236: F141-F148

    Google Scholar 

  46. Guyton AC (1981) Textbook of medical physiology, 6th ed. W.B. Saunders, Philadelphia

    Google Scholar 

  47. Ekstrand J, Whitford GM (1984) Fluoride metabolism: a longitudinal study in growing dogs. J Dent Res 63: 206

    Google Scholar 

  48. Kekki M, Lampainen E, Kauranen P, Hoikka V, Alhava EM, Pasternack A (1982) The nonlinear tissue-binding character of fluoride kinetics in normal and anephric subjects. Nephron 31: 129–134

    Google Scholar 

  49. Parfitt AM (1983) The physiologic and clinical significance of bone histomorphometric data. In: Recker RR (ed) Bone histomorphometry. CRC Press, Boca Raton, FL, pp 143–223

    Google Scholar 

  50. Boivin G, Chapuy M-C, Baud CA, Meunier PJ (1988) Fluoride content in human iliac bone: results incontrols, patients with fluorosis, and osteoporotic patients treated with fluoride. J Bone Miner Res 3: 497–502

    Google Scholar 

  51. Alhava EM, Olkkonen H, Kauranen P, Kari T (1980) The effect of drinking water fluoridation on fluoride content, strength and mineral density of human bone. Acta Orthop Scand 51: 413–420

    Google Scholar 

  52. Zipkin I, McClure FJ, Leone NC, Lee WA (1958) Fluoride deposition in human bones after prolonged ingestion of fluoride in drinking water. Pub Health Rep 73: 732–740

    Google Scholar 

  53. Bang S, Baud CA (1990) Topographical distribution of fluoride in iliac bone of a fluoride-treated osteoporotic patient. J Bone Miner Res 5(suppl 1): S87-S89

    Google Scholar 

  54. Rivera J (1964) Strontium-90 in human vertebrae, 1962–1963. Radiol Health Data 5: 511

    Google Scholar 

  55. Ekstrand J, Spak C-J, Vogel G (1990) Pharmacokinetics of fluoride in man and its clinical relevance. J Dent Res 69(special issue): 550–555

    Google Scholar 

  56. Gong JK, Arnold JS, Cohn SH (1964) Composition of trabecular and cortical bone. Anat Rec 149: 325–332

    Google Scholar 

  57. Jackson D, Weidmann SM (1958) Fluorine in human bone related to age and the water supply of different regions. J Pathol 76: 451–459

    Google Scholar 

  58. Anonymous (1973) Strontium-90 in human vertebrae, 1971. Rad Data Rep:620–623

  59. Heaney RP, Whedon GD (1958) Radiocalcium studies of bone formation rate in human metabolic bone disease. J Clin Endocrinol 18: 1246–1267

    Google Scholar 

  60. Boivin G, Chavassieux P, Chapuy M-C, Baud CA, Meunier PJ (1990) Skeletal fluorosis: histomorphometric findings. J Bone Miner Res 5(suppl 1): S185-S189

    Google Scholar 

  61. Murray TM, Harrison JE, Bayley TA, Josse RG, Sturtridge WC, Chow R, Budden F, Laurier L, Pritzker KPH, Kandel R, Vieth R, Strauss A, Goodwin S (1990) Fluoride treatment of postmenopausal osteoporosis: age, renal function, and other clinical factors in the osteogenic response. J Bone Miner Res 5(suppl 1): S27-S35

    Google Scholar 

  62. Farley SMG, Libanati CR, Mariano-Menez MR, Tudtud-Hans LA, Schulz EE, Baylink DJ (1990) Fluoride therapy for osteoporosis promotes a progressive increase in spinal bone density. J Bone Miner Res (suppl 1):S37–S42

  63. Marshall JH, Lloyd EL, Rundo J, Liniecki J, Marotti G, Mays CW, Sissons HA, Synder WS (1973) Alkaline earth metabolism in adult man. Health Physics 24: 125–221

    Google Scholar 

  64. Waterhouse C, Taves D, Munzer A (1980) Serum inorganic fluoride: changes related to previous fluoride intake, renal function and bone resorption. Clin Sci 58: 145–152

    Google Scholar 

  65. Grynpas MD (1990) Fluoride effects on bone crystals. J Bone Miner Res 5(suppl 1): S169-S175

    Google Scholar 

  66. Carter DR, Beaupré GS (1990) Effects of fluoride treatment on bone strength. J Bone Miner Res (Suppl 1):S177–S184

  67. Rubin CT, Lanyon LE (1984) Dynamic strain similarity in vertebrates and alternative to allometric limb bone scaling. J Theor Biol 107: 321–327

    Google Scholar 

  68. Rice JC, Cowin SC, Bowman JA (1988) On the dependence of the elasticity and strength of cancellous bone on apparent density. J Biomechanics 21: 155–168

    Google Scholar 

  69. Boivin G, Chavassieux P, Chapuy MC, Baud CA, Meunier PJ (1989) Skeletal fluorosis: histomorphometric analysis of bone changes and bone fluoride content in 29 patients. Bone 10: 89–99

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Turner, C.H., Boivin, G. & Meunier, P.J. A mathematical model for fluoride uptake by the skeleton. Calcif Tissue Int 52, 130–138 (1993). https://doi.org/10.1007/BF00308322

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00308322

Key words

Navigation