Skip to main content

Flow Cytometric Identification of Fibrocytes in the Human Circulation

  • Protocol
Immunosenescence

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1343))

Abstract

Because the incidence of organ fibrosis increases with age, various fibrosing disorders are projected to account for significant increases in morbidity, mortality, and healthcare costs in the years to come. Treatments for these diseases are scarce and better understanding of the immunopathogenesis of fibrosis and its relationship to aging are sorely needed. One area of interest in this field is the role that fibrocytes might play in the development of tissue remodeling and fibrosis. Fibrocytes are mesenchymal progenitor cells presumed to be of monocyte origin that possess the tissue remodeling properties of tissue resident fibroblasts such as extracellular matrix production and α-SMA-related contractile properties, as well as the immunologic functions typically attributed to macrophages including production of cytokines and chemokines, antigen presentation, regulation of leukocyte trafficking, and modulation of angiogenesis. Fibrocytes could participate in the development of age-related fibrosing disorders through any or all of these functions. This chapter presents methods that have been developed for the study of circulating human fibrocytes. Protocols for the quantification of fibrocytes in the human circulation will be presented along with discussion of the technical challenges that are frequently encountered in this field. It is hoped that this information will facilitate further investigation of the relationship between fibrocytes, aging, and fibrosis, and perhaps uncover new areas of study in these difficult-to-treat and deadly diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Murray PJ, Wynn TA (2011) Protective and pathogenic functions of macrophage subsets. Nat Rev Immunol 11:723–737

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  2. Murray LA, Rubinowitz A, Herzog EL (2012) Interstitial lung disease: is interstitial lung disease the same as scleroderma lung disease? Curr Opin Rheumatol 24:656–662

    Article  PubMed  CAS  Google Scholar 

  3. Homer RJ, Elias JA, Lee CG et al (2011) Modern concepts on the role of inflammation in pulmonary fibrosis. Arch Pathol Lab Med 135:780–788

    PubMed  CAS  Google Scholar 

  4. Gross TJ, Hunninghake GW (2001) Idiopathic pulmonary fibrosis. N Engl J Med 345:517–525

    Article  PubMed  CAS  Google Scholar 

  5. Bucala R, Spiegel LA, Chesney J et al (1994) Circulating fibrocytes define a new leukocyte subpopulation that mediates tissue repair. Mol Med 1:71–81

    PubMed  CAS  PubMed Central  Google Scholar 

  6. Reilkoff RA, Bucala R, Herzog EL (2011) Fibrocytes: emerging effector cells in chronic inflammation. Nat Rev Immunol 11:427–435

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  7. Galligan CL, Siminovitch KA, Keystone EC et al (2009) Fibrocyte activation in rheumatoid arthritis. Rheumatology (Oxford) 49:640–651

    Article  Google Scholar 

  8. Douglas RS, Afifiyan NF, Hwang CJ et al (2009) Increased generation of fibrocytes in thyroid-associated ophthalmopathy. J Clin Endocrinol Metab 95:430–438

    Article  PubMed  PubMed Central  Google Scholar 

  9. Peng X, Mathai SK, Murray LA et al (2011) Local apoptosis promotes collagen production by monocyte-driven cells in transforming growth factor β1-induced lung fibrosis. Fibrogenesis Tissue Repair 4:12–25

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  10. Mathai SK, Gulati M, Peng X et al (2010) Circulating monocytes from systemic sclerosis patients with interstitial lung disease show an enhanced profibrotic phenotype. Lab Invest 90:812–823

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  11. Gan Y, Reilkoff RA, Peng X et al (2011) Role of semaphorin 7a signaling in transforming growth factor β1-induced lung fibrosis and scleroderma-related interstitial lung disease. Arthritis Rheum 63:2484–2494

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  12. Moeller A, Gilpin SE, Ask K et al (2009) Circulating fibrocytes are an indicator for poor prognosis in idiopathic pulmonary fibrosis. Am J Respir Crit Care Med 179:588–594

    Article  PubMed  Google Scholar 

  13. Mehrad B, Burdick MD, Zisman DA et al (2006) Circulating peripheral blood fibrocytes in human fibrotic interstitial lung disease. Biochem Biophys Res Commun 353:104–108

    Article  PubMed  Google Scholar 

  14. Mehrad B, Burdick MD, Strieter RM (2009) Fibrocyte cxcr4 regulation as a therapeutic target in pulmonary fibrosis. Int J Biochem Cell Biol 41:1708–1718

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  15. Schmidt M, Sun G, Stacey MA et al (2003) Identification of circulating fibrocytes as precursors of bronchial myofibroblasts in asthma. J Immunol 171:380–389

    Article  PubMed  CAS  Google Scholar 

  16. Wang CH, Huang CD, Lin HC et al (2008) Increased circulating fibrocytes in asthma with chronic airflow obstruction. Am J Respir Crit Care Med 178:583–591

    Article  PubMed  CAS  Google Scholar 

  17. Nihlberg K, Larsen K, Hultgardh-Nilsson A et al (2006) Tissue fibrocytes in patients with mild asthma: A possible link to thickness of reticular basement membrane? Respir Res 7:50

    Article  PubMed  PubMed Central  Google Scholar 

  18. Vakil V, Sung JJ, Piecychna M et al (2009) Gadolinium-containing magnetic resonance image contrast agent promotes fibrocyte differentiation. J Magn Reson Imaging 30:1284–1288

    Article  PubMed  PubMed Central  Google Scholar 

  19. Falk E (2006) Pathogenesis of atherosclerosis. J Am Coll Cardiol 47:C7–C12

    Article  PubMed  CAS  Google Scholar 

  20. Nikam VS, Wecker G, Schermuly R et al (2011) Treprostinil inhibits adhesion and differentiation of fibrocytes via camp and rap dependent erk inactivation. Am J Respir Cell Mol Biol 45:692–703

    Article  PubMed  CAS  Google Scholar 

  21. Murray LA, Chen Q, Kramer MS et al (2010) Tgf-beta driven lung fibrosis is macrophage dependent and blocked by serum amyloid p. Int J Biochem Cell Biol 43:154–162

    Article  PubMed  Google Scholar 

  22. Phillips RJ, Burdick MD, Hong K et al (2004) Circulating fibrocytes traffic to the lungs in response to cxcl12 and mediate fibrosis. J Clin Invest 114:438–446

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  23. Kisseleva T, Uchinami H, Feirt N et al (2006) Bone marrow-derived fibrocytes participate in pathogenesis of liver fibrosis. J Hepatol 45:429–438

    Article  PubMed  CAS  Google Scholar 

  24. Niedermeier M, Reich B, Gomez RM et al (2009) Cd4+ t cells control the differentiation of gr1+ monocytes into fibrocytes. Proc Natl Acad Sci U S A 106:17892–17897

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  25. Katebi M, Fernandez P, Chan ES et al (2008) Adenosine a2a receptor blockade or deletion diminishes fibrocyte accumulation in the skin in a murine model of scleroderma, bleomycin-induced fibrosis. Inflammation 31:299–303

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  26. Haudek SB, Cheng J, Du J et al (2010) Monocytic fibroblast precursors mediate fibrosis in angiotensin-ii-induced cardiac hypertrophy. J Mol Cell Cardiol 49:499–507

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  27. Haudek SB, Xia Y, Huebener P et al (2006) Bone marrow-derived fibroblast precursors mediate ischemic cardiomyopathy in mice. Proc Natl Acad Sci U S A 103:18284–18289

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  28. Haudek SB, Trial J, Xia Y et al (2008) Fc receptor engagement mediates differentiation of cardiac fibroblast precursor cells. Proc Natl Acad Sci U S A 105:10179–10184

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  29. Buday A, Orsy P, Godo M et al (2010) Elevated systemic tgf-beta impairs aortic vasomotor function through activation of nadph oxidase-driven superoxide production and leads to hypertension, myocardial remodeling, and increased plaque formation in apoe(−/−) mice. Am J Physiol Heart Circ Physiol 299:H386–H395

    Article  PubMed  CAS  Google Scholar 

  30. Xu J, Gonzalez ET, Iyer SS et al (2009) Use of senescence-accelerated mouse model in bleomycin-induced lung injury suggests that bone marrow-derived cells can alter the outcome of lung injury in aged mice. J Gerontol A Biol Sci Med Sci 64:731–739

    Article  PubMed  Google Scholar 

  31. Scholten D, Reichart D, Paik YH et al (2011) Migration of fibrocytes in fibrogenic liver injury. Am J Pathol 179:189–198

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  32. Zhang H, Maric I, DiPrima MJ, Khan J, Orentas RJ, Kaplan RN, Mackall CL (2013) Fibrocytes represent a novel MDSC subset circulating inn patients with metastatic cancer. Blood 122:1105–1113

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  33. Van Deventer HW, Wu PQ, Bergsstralh DT, Davis BD, O’Connor BP, Ting J, Serody JS (2008) C-C chemokine receptor 5 on pulmonary fibrocytes facilitates migration and promotes metastasis via matrix metalloproteinase 9. Am J Pathol 173:253–264

    Article  PubMed  PubMed Central  Google Scholar 

  34. Van Deventer HW, Palmieri DA, Ping Q, McCook EC, Serody JS (2013) Circulating fibrocytes prepare the lung for cancer metastasis by recruiting Ly-6C+ monocytes via CCL2. J Immunol 190:4861–4867

    Article  PubMed  PubMed Central  Google Scholar 

  35. Yang L, Scott PG, Giuffre J et al (2002) Peripheral blood fibrocytes from burn patients: identification and quantification of fibrocytes in adherent cells cultured from peripheral blood mononuclear cells. Lab Invest 82:1183–1192

    Article  PubMed  CAS  Google Scholar 

  36. Pilling D, Fan T, Huang D et al (2009) Identification of markers that distinguish monocyte-derived fibrocytes from monocytes, macrophages, and fibroblasts. PLoS One 4:e7475

    Article  PubMed  PubMed Central  Google Scholar 

  37. Chesney J, Bacher M, Bender A et al (1997) The peripheral blood fibrocyte is a potent antigen-presenting cell capable of priming naive t cells in situ. Proc Natl Acad Sci U S A 94:6307–6312

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  38. Bellini A, Mattoli S (2007) The role of the fibrocyte, a bone marrow-derived mesenchymal progenitor, in reactive and reparative fibroses. Lab Invest 87:858–870

    Article  PubMed  CAS  Google Scholar 

  39. Bianchetti L, Barczyk M, Cardoso J et al (2012) Extracellular matrix remodeling properties of human fibrocytes. J Cell Mol Med 3:483–495

    Article  Google Scholar 

  40. Abe R, Donnelly SC, Peng T et al (2001) Peripheral blood fibrocytes: differentiation pathway and migration to wound sites. J Immunol 166:7556–7562

    Article  PubMed  CAS  Google Scholar 

  41. Pilling D, Buckley CD, Salmon M et al (2003) Inhibition of fibrocyte differentiation by serum amyloid p. J Immunol 171:5537–5546

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  42. Castano AP, Lin SL, Surowy T, Nowlin BT et al (2009) Serum amyloid p inhibits fibrosis through fc gamma r-dependent monocyte-macrophage regulation in vivo. Sci Transl Med 1:5ra13

    Article  PubMed  PubMed Central  Google Scholar 

  43. Bellini A, Marini MA, Bianchetti L et al (2011) Interleukin (il)-4, il-13, and il-17a differentially affect the profibrotic and proinflammatory functions of fibrocytes from asthmatic patients. Mucosal Immunol 5:140–149

    Article  PubMed  Google Scholar 

  44. Shao DD, Suresh R, Vakil V et al (2008) Pivotal advance: Th-1 cytokines inhibit, and th-2 cytokines promote fibrocyte differentiation. J Leukoc Biol 83:1323–1333

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  45. Moore BB, Murray L, Das A et al (2006) The role of ccl12 in the recruitment of fibrocytes and lung fibrosis. Am J Respir Cell Mol Biol 35:175–181

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  46. Sakai N, Wada T, Yokoyama H et al (2006) Secondary lymphoid tissue chemokine (slc/ccl21)/ccr7 signaling regulates fibrocytes in renal fibrosis. Proc Natl Acad Sci U S A 103:14098–14103

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  47. Quan TE, Cowper S, Wu SP et al (2004) Circulating fibrocytes: Collagen-secreting cells of the peripheral blood. Int J Biochem Cell Biol 36:598–606

    Article  PubMed  CAS  Google Scholar 

  48. Lazova R, Gould Rothberg BE, Rimm D et al (2009) The semaphorin 7a receptor plexin c1 is lost during melanoma metastasis. Am J Dermatopathol 31:177–181

    Article  PubMed  Google Scholar 

  49. Chesney J, Metz C, Stavitsky AB et al (1998) Regulated production of type i collagen and inflammatory cytokines by peripheral blood fibrocytes. J Immunol 160:419–425

    PubMed  CAS  Google Scholar 

  50. Balmelli C, Alves MP, Steiner E et al (2007) Responsiveness of fibrocytes to toll-like receptor danger signals. Immunobiology 212:693–699

    Article  PubMed  CAS  Google Scholar 

  51. Hartlapp I, Abe R, Saeed RW et al (2001) Fibrocytes induce an angiogenic phenotype in cultured endothelial cells and promote angiogenesis in vivo. FASEB J 15:2215–2224

    Article  PubMed  CAS  Google Scholar 

  52. Sultana H, Neelakanta G, Foellmer HG et al (2012) Semaphorin 7a contributes to west nile virus pathogenesis through tgf-beta1/smad6 signaling. J Immunol 189:3150–3158

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  53. Barth PJ, Ebrahimsade S, Hellinger A et al (2002) Cd34+ fibrocytes in neoplastic and inflammatory pancreatic lesions. Virchows Arch 440:128–133

    Article  PubMed  CAS  Google Scholar 

  54. Barth PJ, Koster H, Moosdorf R (2005) Cd34+ fibrocytes in normal mitral valves and myxomatous mitral valve degeneration. Pathol Res Pract 201:301–304

    Article  PubMed  Google Scholar 

  55. Kraman M, Bambrough PJ, Arnold JN et al (2010) Suppression of antitumor immunity by stromal cells expressing fibroblast activation protein-alpha. Science 330:827–830

    Article  PubMed  CAS  Google Scholar 

  56. Quan TE, Bucala R (2007) Culture and analysis of circulating fibrocytes. Methods Mol Med 135:423–434

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by grants R01 HL109033, U01 HL112702-01 (both to E.L.H) from the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erica L. Herzog M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Hu, X., DeBiasi, E.M., Herzog, E.L. (2015). Flow Cytometric Identification of Fibrocytes in the Human Circulation. In: Shaw, A. (eds) Immunosenescence. Methods in Molecular Biology, vol 1343. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2963-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2963-4_3

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2962-7

  • Online ISBN: 978-1-4939-2963-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics