Skip to main content

Advertisement

Log in

Adenosine A2A Receptor Blockade or Deletion Diminishes Fibrocyte Accumulation in the Skin in a Murine Model of Scleroderma, Bleomycin-induced Fibrosis

  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

Peripheral blood fibrocytes are a newly identified circulating leukocyte subpopulation that migrates into injured tissue where it may display fibroblast-like properties and participate in wound healing and fibrosis of skin and other organs. Previous studies in our lab demonstrated that A2A receptor-deficient and A2A antagonist-treated mice were protected from developing bleomycin-induced dermal fibrosis, thus the aim of this study was to determine whether the adenosine A2A receptor regulates recruitment of fibrocytes to the dermis in this bleomycin-induced model of dermal fibrosis. Sections of skin from normal mice and bleomycin-treated wild type, A2A knockout and A2A antagonist-treated mice were stained for Procollagen α2 Type I and CD34 and the double stained cells, fibrocytes, were counted in the tissue sections. There were more fibrocytes in the dermis of bleomycin-treated mice than normal mice and the increase was abrogated by deletion or blockade of adenosine A2A receptors. Because fibrocytes play a central role in tissue fibrosis these results suggest that diminished adenosine A2A receptor-mediated recruitment of fibrocytes into tissue may play a role in the pathogenesis of fibrosing diseases of the skin. Moreover, these results provide further evidence that adenosine A2A receptors may represent a new target for the treatment of such fibrosing diseases as scleroderma or nephrogenic fibrosing dermopathy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

A2AKO:

adenosine A2A receptor knockout

References

  1. Dubey, R. K., D. G. Gillespie, and E. K. Jackson. 1998. Adenosine inhibits collagen and protein synthesis in cardiac fibroblasts: role of A2B receptors. Hypertension 31:943–948.

    PubMed  CAS  Google Scholar 

  2. Chan, E. S., P. Fernandez, A. A. Merchant, M. C. Montesinos, S. Trzaska, A. Desai et al. 2006. Adenosine A2A receptors in diffuse dermal fibrosis: pathogenic role in human dermal fibroblasts and in a murine model of scleroderma. Arthritis Rheum. 54:2632–2642, doi:10.1002/art.21974.

    Article  PubMed  CAS  Google Scholar 

  3. Zhong, H., L. Belardinelli, T. Maa, and D. Zeng. 2005. Synergy between A2B adenosine receptors and hypoxia in activating human lung fibroblasts. Am. J. Respir. Cell. Mol. Biol. 32:2–8, doi:10.1165/rcmb.2004-0103OC.

    Article  PubMed  CAS  Google Scholar 

  4. Chen, Y., S. Epperson, L. Makhsudova, B. Ito, J. Suarez, W. Dillmann et al. 2004. Functional effects of enhancing or silencing adenosine A2b receptors in cardiac fibroblasts. Am. J. Physiol. Heart Circ. Physiol. 287:H2478–H2486, doi:10.1152/ajpheart.00217.2004.

    Article  PubMed  CAS  Google Scholar 

  5. Murakami, S., T. Hashikawa, T. Saho, M. Takedachi, T. Nozaki, Y. Shimabukuro, et al. 2001. Adenosine regulates the IL-1 beta-induced cellular functions of human gingival fibroblasts. Int. Immunol. 13:1533–1540, doi:10.1093/intimm/13.12.1533.

    Article  PubMed  CAS  Google Scholar 

  6. Dubey, R. K., D. G. Gillespie, L. C. Zacharia, Z. Mi, and E. K. Jackson. 2001. A(2b) receptors mediate the antimitogenic effects of adenosine in cardiac fibroblasts. Hypertension 37:716–721.

    PubMed  CAS  Google Scholar 

  7. Murakami, S., M. Terakura, T. Kamatani, T. Hashikawa, T. Saho, Y. Shimabukuro et al. 2000. Adenosine regulates the production of interleukin-6 by human gingival fibroblasts via cyclic AMP/protein kinase A pathway. J. Periodontal. Res. 35:93–101, doi:10.1034/j.1600-0765.2000.035002093.x.

    Article  PubMed  CAS  Google Scholar 

  8. Chan, E. S., M. C. Montesinos, P. Fernandez, A. Desai, D. L. Delano, H. Yee et al. 2006. Adenosine A(2A) receptors play a role in the pathogenesis of hepatic cirrhosis. Br. J. Pharmacol. 148:1144–1155, doi:10.1038/sj.bjp.0706812.

    Article  PubMed  CAS  Google Scholar 

  9. Che, J., E. S. Chan, and B. N. Cronstein. 2007. Adenosine A2A receptor occupancy stimulates collagen expression by hepatic stellate cells via pathways involving protein kinase A, Src, and extracellular signal-regulated kinases 1/2 signaling cascade or p38 mitogen-activated protein kinase signaling pathway. Mol. Pharmacol. 72:1626–1636, doi:10.1124/mol.107.03876.

    Article  PubMed  CAS  Google Scholar 

  10. Hashmi, A. Z., W. Hakim, E. A. Kruglov, A. Watanabe, W. Watkins, J. A. Dranoff, et al. 2007. Adenosine inhibits cytosolic calcium signals and chemotaxis in hepatic stellate cells. Am. J. Physiol. Gastrointest. Liver Physiol. 292:G395–G401, doi:10.1152/ajpgi.00208.2006.

    Article  PubMed  CAS  Google Scholar 

  11. Montesinos, M. C., P. Gadangi, M. Longaker, J. Sung, J. Levine, D. Nilsen, et al. 1997. Wound healing is accelerated by agonists of adenosine A2 (G alpha s-linked) receptors. J. Exp. Med. 186:1615–1620, doi:10.1084/jem.186.9.1615.

    Article  PubMed  CAS  Google Scholar 

  12. Blackburn, M. R., C. G. Lee, H. W. Young, Z. Zhu, J. L. Chunn, M. J. Kang et al. 2003. Adenosine mediates IL-13-induced inflammation and remodeling in the lung and interacts in an IL-13-adenosine amplification pathway. J. Clin. Invest. 112:332–344.

    PubMed  CAS  Google Scholar 

  13. Sun, C. X., H. Zhong, A. Mohsenin, E. Morschl, J. L. Chunn, J. G. Molina, et al. 2006. Role of A2B adenosine receptor signaling in adenosine-dependent pulmonary inflammation and injury. J. Clin. Invest. 116:2173–2182, doi:10.1172/JCI27303.

    Article  PubMed  CAS  Google Scholar 

  14. Ma, B., M. R. Blackburn, C. G. Lee, R. J. Homer, W. Liu, R. A. Flavell, et al. 2006. Adenosine metabolism and murine strain-specific IL-4-induced inflammation, emphysema, and fibrosis. J. Clin. Invest. 116:1274–1283, doi:10.1172/JCI26372.

    Article  PubMed  CAS  Google Scholar 

  15. Chunn, J. L., A. Mohsenin, H. W. Young, C. G. Lee, J. A. Elias, R. E. Kellems et al. 2006. Partially adenosine deaminase-deficient mice develop pulmonary fibrosis in association with adenosine elevations. Am. J. Physiol. Lung Cell Mol. Physiol. 290:L579–L587, doi:10.1152/ajplung.00258.2005.

    Article  PubMed  CAS  Google Scholar 

  16. Chunn, J. L., J. G. Molina, T. Mi, Y. Xia, R. E. Kellems, and M. R. Blackburn. 2005. Adenosine-dependent pulmonary fibrosis in adenosine deaminase-deficient mice. J. Immunol. 175:1937–1946.

    PubMed  CAS  Google Scholar 

  17. Bellini, A., and S. Mattoli. 2007. The role of the fibrocyte, a bone marrow-derived mesenchymal progenitor, in reactive and reparative fibroses. Lab. Invest. 87:858–870, doi:10.1038/labinvest.3700654.

    Article  PubMed  CAS  Google Scholar 

  18. Quan, T. E., S. E. Cowper, and R. Bucala. 2006. The role of circulating fibrocytes in fibrosis. Curr. Rheumatol. Rep. 8:145–150, doi:10.1007/s11926-006-0055-x.

    Article  PubMed  CAS  Google Scholar 

  19. Quan, T. E., S. Cowper, S. P. Wu, L. K. Bockenstedt, and R. Bucala. 2004. Circulating fibrocytes: collagen-secreting cells of the peripheral blood. Int. J. Biochem. Cell. Biol. 36:598–606, doi:10.1016/j.biocel.2003.10.005.

    Article  PubMed  CAS  Google Scholar 

  20. Pilling, D., D. Roife, M. Wang, S. D. Ronkainen, J. R. Crawford, E. L. Travis, et al. 2007. Reduction of bleomycin-induced pulmonary fibrosis by serum amyloid P. J. Immunol. 179:4035–4044.

    PubMed  CAS  Google Scholar 

  21. Ishida, Y., A. Kimura, T. Kondo, T. Hayashi, M. Ueno, N. Takakura, et al. 2007. Essential roles of the CC chemokine ligand 3-CC chemokine receptor 5 axis in bleomycin-induced pulmonary fibrosis through regulation of macrophage and fibrocyte infiltration. Am. J. Pathol. 170:843–854 doi:10.2353/ajpath.2007.051213.

    Article  PubMed  CAS  Google Scholar 

  22. Boban, I., T. Barisic-Dujmovic, and S. H. Clark. 2008. Parabiosis and transplantation models show no evidence of circulating dermal fibroblast progenitors in bleomycin-induced skin fibrosis. J. Cell. Physiol. 214:230–237, doi:10.1002/jcp.21182.

    Article  PubMed  CAS  Google Scholar 

  23. Victor-Vega, C., A. Desai, M. Montesinos, and B. Cronstein. 2002. Adenosine A2A agonists promote more rapid wound healing than recombinant human platelet derived growth factor (PDGF). Inflammation 26:19–24, doi:10.1023/A:1014417728325.

    Article  PubMed  CAS  Google Scholar 

  24. Montesinos, M., J. F. Chen, A. Desai, H. Yee, M. Jacobson, M. Schwarzschild, et al. 2002. Adenosine promotes wound healing and mediates angiogenesis in response to tissue injury via occupancy of A2A receptors. Am. J. Pathol. 160:2000–2009.

    Google Scholar 

  25. Montesinos, M. C., J. P. Shaw, H. Yee, P. Shamamian, and B. N. Cronstein. 2004. Adenosine A(2A) receptor activation promotes wound neovascularization by stimulating angiogenesis and vasculogenesis. Am. J. Pathol. 164:1887–1892.

    PubMed  CAS  Google Scholar 

  26. Desai, A., C. Victor-Vega, S. Gadangi, M. C. Montesinos, C. C. Chu, and B. N. Cronstein. 2005. Adenosine A2A receptor stimulation increases angiogenesis by down-regulating production of the antiangiogenic matrix protein thrombospondin 1. Mol. Pharmacol. 67:1406–1413, doi:10.1124/mol.104.007807.

    Article  PubMed  CAS  Google Scholar 

  27. Khoa, N. D., C. M. Montesinos, A. J. Williams, M. Kelly, and B. N. Cronstein. 2003. Th1 cytokines regulate adenosine receptors and their downstream signalling elements in human microvascular endothelial cells. J. Immunol. 171:3991–3998.

    CAS  Google Scholar 

  28. Bucala, R., L. A. Spiegel, J. Chesney, M. Hogan, and A. Cerami. 1994. Circulating fibrocytes define a new leukocyte subpopulation that mediates tissue repair. Mol. Med. 1:71–81.

    PubMed  CAS  Google Scholar 

  29. Abe, R., S. C. Donnelly, T. Peng, R. Bucala, and C. N. Metz. 2001. Peripheral blood fibrocytes: differentiation pathway and migration to wound sites. J. Immunol. 166:7556–7562.

    PubMed  CAS  Google Scholar 

  30. Phillips, R. J., M. D. Burdick, K. Hong, M. A. Lutz, L. A. Murray, Y. Y. Xue et al. 2004. Circulating fibrocytes traffic to the lungs in response to CXCL12 and mediate fibrosis. J. Clin. Invest. 114:438–446.

    PubMed  CAS  Google Scholar 

  31. Richard, C. L., E. Y. Tan, and J. Blay. 2006. Adenosine upregulates CXCR4 and enhances the proliferative and migratory responses of human carcinoma cells to CXCL12/SDF-1alpha. Int. J. Cancer 119:2044–2053, doi:10.1002/ijc.22084.

    Article  PubMed  CAS  Google Scholar 

  32. Leibovich, S., J. F. Chen, P. Belem, G. Elson, A. Rosania, M. Ramanathan, et al. 2002. Synergistic up-regulation of vascular endothelial growth factor (VEGF) expression in murine macrophages by adenosine A2A receptor agonists and endotoxin. Am. J. Pathol. 160:2231–2244.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National Institutes of Health (AR41911, AA13336, GM56268), the Scleroderma Foundation, King Pharmaceuticals, the General Clinical Research Center (M01RR00096) and by the Kaplan Cancer Center of New York University School of Medicine.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruce N. Cronstein.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Katebi, M., Fernandez, P., Chan, E.S.L. et al. Adenosine A2A Receptor Blockade or Deletion Diminishes Fibrocyte Accumulation in the Skin in a Murine Model of Scleroderma, Bleomycin-induced Fibrosis. Inflammation 31, 299–303 (2008). https://doi.org/10.1007/s10753-008-9078-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-008-9078-y

KEY WORDS

Navigation