Skip to main content

Derivation of Equine-Induced Pluripotent Stem Cell Lines Using a piggyBac Transposon Delivery System and Temporal Control of Transgene Expression

  • Protocol
Cell Reprogramming

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1330))

Abstract

The discovery of induced pluripotent stem cells (iPSCs) has had a transforming effect on our understanding of biology and has brought an enormous promise to regenerative medicine. It has opened up a magnitude of unprecedented possibilities to study disease processes in vitro, model them in animal systems, and develop patient-specific cell-based regenerative therapies. iPSCs derived from other than the human species will be instrumental for bringing these prospects to fruition by providing preclinical models and novel treatments for veterinary medicine. In this chapter, we describe the derivation of iPSCs from equine embryonic fibroblasts using a non-viral method developed in our laboratory and originally applied to the murine and human systems (Woltjen et al., Nature 458:766–770, 2009). We will detail the procedures involved and discuss potential pitfalls as well as elaborate on possible variations and future improvements of this technique.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663–676

    Article  CAS  PubMed  Google Scholar 

  2. Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131:861–872

    Article  CAS  PubMed  Google Scholar 

  3. Liu H, Zhu F, Yong J, Zhang P, Hou P, Li H, Jiang W, Cai J, Liu M, Cui K et al (2008) Generation of induced pluripotent stem cells from adult rhesus monkey fibroblasts. Cell Stem Cell 3:587–590

    Article  CAS  PubMed  Google Scholar 

  4. Liao J, Cui C, Chen S, Ren J, Chen J, Gao Y, Li H, Jia N, Cheng L, Xiao H et al (2009) Generation of induced pluripotent stem cell lines from adult rat cells. Cell Stem Cell 4:11–15

    Article  CAS  PubMed  Google Scholar 

  5. Esteban MA, Xu J, Yang J, Peng M, Qin D, Li W, Jiang Z, Chen J, Deng K, Zhong M et al (2009) Generation of induced pluripotent stem cell lines from Tibetan miniature pig. J Biol Chem 284:17634–17640

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Ezashi T, Telugu BP, Alexenko AP, Sachdev S, Sinha S, Roberts RM (2009) Derivation of induced pluripotent stem cells from pig somatic cells. Proc Natl Acad Sci U S A 106:10993–10998

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. West FD, Terlouw SL, Kwon DJ, Mumaw JL, Dhara SK, Hasneen K, Dobrinsky JR, Stice SL (2010) Porcine induced pluripotent stem cells produce chimeric offspring. Stem Cells Dev 19:1211–1220

    Article  CAS  PubMed  Google Scholar 

  8. Wu Z, Chen J, Ren J, Bao L, Liao J, Cui C, Rao L, Li H, Gu Y, Dai H et al (2009) Generation of pig induced pluripotent stem cells with a drug-inducible system. J Mol Cell Biol 1:46–54

    Article  CAS  PubMed  Google Scholar 

  9. Wu Y, Zhang Y, Mishra A, Tardif SD, Hornsby PJ (2010) Generation of induced pluripotent stem cells from newborn marmoset skin fibroblasts. Stem Cell Res 4:180–188

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Honda A, Hirose M, Hatori M, Matoba S, Miyoshi H, Inoue K, Ogura A (2010) Generation of induced pluripotent stem cells in rabbits: potential experimental models for human regenerative medicine. J Biol Chem 285:31362–31369

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Shimada H, Nakada A, Hashimoto Y, Shigeno K, Shionoya Y, Nakamura T (2010) Generation of canine induced pluripotent stem cells by retroviral transduction and chemical inhibitors. Mol Reprod Dev 77:2

    Article  CAS  PubMed  Google Scholar 

  12. Sumer H, Liu J, Malaver-Ortega LF, Lim ML, Khodadadi K, Verma PJ (2011) NANOG is a key factor for induction of pluripotency in bovine adult fibroblasts. J Anim Sci 89:2708–2716

    Article  CAS  PubMed  Google Scholar 

  13. Liu J, Balehosur D, Murray B, Kelly JM, Sumer H, Verma PJ (2012) Generation and characterization of reprogrammed sheep induced pluripotent stem cells. Theriogenology 77:338–346.e1

    Article  CAS  PubMed  Google Scholar 

  14. Khodadadi K, Sumer H, Pashaiasl M, Lim S, Williamson M, Verma PJ (2012) Induction of pluripotency in adult equine fibroblasts without c-MYC. Stem Cells Int 2012:429160

    Article  PubMed Central  PubMed  Google Scholar 

  15. Nagy K, Sung H-K, Zhang P, Laflamme S, Vincent P, Agha-Mohammadi S, Woltjen K, Monetti C, Michael IP, Smith LC et al (2011) Induced pluripotent stem cell lines derived from equine fibroblasts. Stem Cell Rev 7:693–702

    Article  PubMed Central  PubMed  Google Scholar 

  16. Shimozawa N, Ono R, Shimada M, Shibata H, Takahashi I, Inada H, Takada T, Nosaka T, Yasutomi Y (2013) Cynomolgus monkey induced pluripotent stem cells established by using exogenous genes derived from the same monkey species. Differentiation 85:131–139

    Article  CAS  PubMed  Google Scholar 

  17. Encheff JL, Armstrong C, Masterson M, Fox C, Gribble P (2012) Hippotherapy effects on trunk, pelvic, and hip motion during ambulation in children with neurological impairments. Pediatr Phys Ther 24:242–250

    Article  PubMed  Google Scholar 

  18. Hession CE, Eastwood B, Watterson D, Lehane CM, Oxley N, Murphy BA (2014) Therapeutic horse riding improves cognition, mood arousal, and ambulation in children with dyspraxia. J Altern Complement Med 20:19–23

    Article  PubMed  Google Scholar 

  19. Kwon J-Y, Chang HJ, Lee JY, Ha Y, Lee PK, Kim Y-H (2011) Effects of hippotherapy on gait parameters in children with bilateral spastic cerebral palsy. Arch Phys Med Rehabil 92:774–779

    Article  PubMed  Google Scholar 

  20. Ward SC, Whalon K, Rusnak K, Wendell K, Paschall N (2013) The association between therapeutic horseback riding and the social communication and sensory reactions of children with autism. J Autism Dev Disord 43:2190–2198

    Article  PubMed  Google Scholar 

  21. Corring D, Lundberg E, Rudnick A (2013) Therapeutic horseback riding for ACT patients with schizophrenia. Community Ment Health J 49:121–126

    Article  PubMed  Google Scholar 

  22. Nathan S, De Das S, Thambyah A, Fen C, Goh J, Lee EH (2003) Cell-based therapy in the repair of osteochondral defects: a novel use for adipose tissue. Tissue Eng 9:733–744

    Article  CAS  PubMed  Google Scholar 

  23. Taylor SE, Smith RKW, Clegg PD (2007) Mesenchymal stem cell therapy in equine musculoskeletal disease: scientific fact or clinical fiction? Equine Vet J 39:172–180

    Article  CAS  PubMed  Google Scholar 

  24. Wilke MM, Nydam DV, Nixon AJ (2007) Enhanced early chondrogenesis in articular defects following arthroscopic mesenchymal stem cell implantation in an equine model. J Orthop Res 25:913–925

    Article  CAS  PubMed  Google Scholar 

  25. Okita K, Ichisaka T, Yamanaka S (2007) Generation of germline-competent induced pluripotent stem cells. Nature 448:313–317

    Article  CAS  PubMed  Google Scholar 

  26. Woltjen K, Michael IP, Mohseni P, Desai R, Mileikovsky M, Hämäläinen R, Cowling R, Wang W, Liu P, Gertsenstein M et al (2009) piggyBac transposition reprograms fibroblasts to induced pluripotent stem cells. Nature 458:766–770

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Paris DB, Stout TA (2010) Equine embryos and embryonic stem cells: defining reliable markers of pluripotency. Theriogenology 74:516–524

    Article  CAS  PubMed  Google Scholar 

  28. Behringer R, Gerstenstein M, Vintersten Nagy K, Nagy A (2014) Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition.Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andras Nagy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Nagy, K., Nagy, A. (2015). Derivation of Equine-Induced Pluripotent Stem Cell Lines Using a piggyBac Transposon Delivery System and Temporal Control of Transgene Expression. In: Verma, P., Sumer, H. (eds) Cell Reprogramming. Methods in Molecular Biology, vol 1330. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2848-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2848-4_8

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2847-7

  • Online ISBN: 978-1-4939-2848-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics