Skip to main content

Electron Tomography Methods for C. elegans

  • Protocol
C. elegans

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1327))

Abstract

Methods for electron tomography of the nematode C. elegans are explained in detail, including a brief introduction to specimen preparation, methods for image collection, and a comparison of several general methods for producing dual-axis tomograms, with or without external fiducial reference objects. New electron tomograms highlight features in software for data display, annotation, and analysis. This chapter discusses the ultrastructural analysis of cells and tissues, rather than molecular studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Brenner S (1974) The genetics of Caenorhabditis elegans. Genetics 77:71–94

    PubMed Central  CAS  PubMed  Google Scholar 

  2. Chalfie M, Tu Y, Euskirchen G, Ward WW, Prasher D (1994) Green fluorescent protein as a marker for gene expression. Science 263:802–805

    Article  CAS  PubMed  Google Scholar 

  3. White JG, Southgate E, Thomson JN, Brenner S (1986) The structure of the nervous system of the nematode Caenorhabditis elegans. Phil Trans R Soc Lond B Biol Sci 314:1–340

    Article  CAS  Google Scholar 

  4. Jarrell TA, Wang Y, Bloniarz AE et al (2012) The connectome of a decision-making neural network. Science 337:437–444

    Article  CAS  PubMed  Google Scholar 

  5. Leis A, Rockel B, Andrees L, Baumeister W (2008) Visualizing cells at the nanoscale. Trends Biochem Sci 34:60–70

    Article  PubMed  Google Scholar 

  6. Frank J (2006) Electron tomography. Methods for three-dimensional visualization of structures in the cell. Springer, New York

    Google Scholar 

  7. Müller-Reichert T, Mancuso J, Lich B, McDonald KL (2010) Three-dimensional reconstruction methods for Caenorhabditis elegans ultrastructure. Methods Cell Biol 96:331–361

    Article  PubMed  Google Scholar 

  8. McDonald KL (1994) Electron microscopy and EM immunocytochemistry. Methods Cell Biol 44:411–444

    Article  CAS  PubMed  Google Scholar 

  9. McDonald KL, Webb RI (2011) Freeze substitution in 3 hours or less. J Microsc 243:227–233

    Article  CAS  PubMed  Google Scholar 

  10. Hall DH, Hartwieg E, Nguyen KCQ (2012) Modern electron microscopy methods for C. elegans. In: Rothman J, Singson A (eds) Methods Cell Biology. Academic Press, New York

    Google Scholar 

  11. Müller-Reichert T, Hohenberg H, O’Toole ET, McDonald KL (2003) Cryoimmobilization and three-dimensional visualization of C. elegans ultrastructure. J Microsc 212:71–80

    Article  PubMed  Google Scholar 

  12. Iancu CV et al (2006) Electron cryotomography sample preparation using the Vitrobot. Nat Prot 1:2813–2819

    Article  CAS  Google Scholar 

  13. Ward S, Thomson N, White JG, Brenner S (1975) Electron microscopical reconstruction of the anterior sensory anatomy of the nematode Caenorhabditis elegans. J Comp Neurol 160:313–337

    Article  CAS  PubMed  Google Scholar 

  14. Ware RW, Clark D, Crossland K, Russell RL (1975) The nerve ring of the nematode Caenorhabditis elegans: sensory input and motor output. J Comp Neurol 162:71–110

    Article  Google Scholar 

  15. Baumeister W, Steven AC (2000) Macromolecular electron microscopy in the era of structural genomics. Trends Biochem Sci 25:624–631

    Article  CAS  PubMed  Google Scholar 

  16. O’Toole ET, McDonald KL, Mäntler J et al (2003) Morphologically distinct microtubule ends in the mitotic centrosome of Caenorhabditis elegans. J Cell Biol 163:451–456

    Article  PubMed Central  PubMed  Google Scholar 

  17. Srayko M, O’Toole ET, Hyman AA, Müller-Reichert T (2006) Katanin disrupts the microtubule lattice and increases polymer number in C. elegans meiosis. Curr Biol 16:1944–1949

    Article  CAS  PubMed  Google Scholar 

  18. Müller-Reichert T, Mantler J, Srayko M, O’Toole E (2008) Electron microscopy of the early Caenorhabditis elegans embryo. J Microsc 230:297–307

    Article  PubMed  Google Scholar 

  19. Stigloher C, Zhan H, Zhen M et al (2011) The presynaptic dense projection of the Caenorhabditis elegans cholinergic neuromuscular junction localizes synaptic vesicles at the active zone through SYD-2/liprin and UNC-10/RIM-dependent interactions. J Neurosci 31:4388–4396

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Topalidou I, Keller C, Kalebic N et al (2012) Both enzymatic and structural activities of the tubulin acetyltransferase MEC-17 are required for microtubule structure and organization in C. elegans. Current Biol 22:1057–1065

    Article  CAS  Google Scholar 

  21. Doroquez DB, Berciu C, Andreson JR et al (2014) A high resolution morphological and ultrastructural map of anterior sensory cilia and glia in Caenorhabditis elegans. eLife 3, e01948. doi:10.7554/eLife.01948

    Article  PubMed Central  PubMed  Google Scholar 

  22. Wang J, Silva M, Haas LA et al (2014) C. elegans ciliated sensory neurons release extracellular vesicles that function in animal communication. Curr Biol 24:519–525

    Article  CAS  PubMed  Google Scholar 

  23. Knott G, Genoud C (2013) Is EM dead? J Cell Sci 126:4545–4552

    Article  CAS  PubMed  Google Scholar 

  24. Suloway C, Pulokas J, Fellmann D et al (2005) Automated molecular microscopy: the new Leginon system. J Struct Biol 151:41–60

    Article  CAS  PubMed  Google Scholar 

  25. Hall DH (1995) Electron microscopy and three-dimensional image reconstruction. Methods Cell Biol 48:395–436

    Article  CAS  PubMed  Google Scholar 

  26. Medalia O, Weber I, Frangakis AS et al (2002) Macromolecular architecture in eukaryotic cells visualized by cryoelectron tomography. Science 298:1209–1213

    Article  CAS  PubMed  Google Scholar 

  27. Crowther RA, Amos LA, Finch JT et al (1970) Three dimensional reconstructions of spherical viruses by Fourier synthesis from electron micrographs. Nature 226:421–425

    Article  CAS  PubMed  Google Scholar 

  28. Saxton WO, Baumeister W, Hahn M (1984) Three-dimensional reconstruction of imperfect two-dimensional crystals. Ultramicroscopy 13:57–70

    Article  CAS  PubMed  Google Scholar 

  29. Grandfield K, Palmquist A, Engqvist H (2012) High-resolution three-dimensional probes of biomaterials and their interfaces. Phil Trans A Math Phys Eng Sci 370:1337–1351

    Article  CAS  Google Scholar 

  30. Mastronarde DN (1997) Dual-axis tomography: an approach with alignment methods that preserve resolution. J Struct Biol 120:343–352

    Article  CAS  PubMed  Google Scholar 

  31. Penczek P, Marko M, Buttle K, Frank J (1995) Double-tilt electron tomography. Ultramicroscopy 60:393–410

    Article  CAS  PubMed  Google Scholar 

  32. Koster AJ, van der Bos A, van der Mast KD (1987) An autofocus method for TEM. Ultramicroscopy 21:209–222

    Article  Google Scholar 

  33. Suloway C, Shi J, Cheng A et al (2009) Fully automated, sequential tilt-series acquisition with Leginon. J Struct Biol 167:11–18

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Amat F, Moussavi F, Comolli LR et al (2008) Markov random field based automatic image alignment for electron tomography. J Struct Biol 161:260–275

    Article  PubMed  Google Scholar 

  35. Mastronarde DN (2005) Automated electron microscope tomography using robust prediction of specimen movements. J Struct Biol 152:36–51

    Article  PubMed  Google Scholar 

  36. Kremer JR, Mastronarde DN, McIntosh JR (1996) Computer visualization of three-dimensional image data using IMOD. J Struct Biol 116:71–76

    Article  CAS  PubMed  Google Scholar 

  37. Frank J, Radermacher M, Penczek P et al (1996) SPIDER and WEB: processing and visualization of images in 3D electron microscopy and related fields. J Struct Biol 116:190–199

    Article  CAS  PubMed  Google Scholar 

  38. Winkler H, Taylor KA (2006) Accurate marker-free alignment with simultaneous geometry determination and reconstruction of tilt series in electron tomography. Ultramicroscopy 106:240–254

    Article  CAS  PubMed  Google Scholar 

  39. Nickell S, Forster F, Linaroudis A et al (2005) TOM software toolbox: acquisition and analysis for electron tomography. J Struct Biol 149:227–234

    Article  PubMed  Google Scholar 

  40. Messaoudi C, Boudier T, Sorzano COS, Marco S (2007) TomoJ: tomography software for three-dimensional reconstruction in transmission electron microscopy. BMC Bioinform 8:288–297

    Article  Google Scholar 

  41. Mastronarde DN (2006) Fiducial marker and hybrid alignment methods for single- and double-axis tomography. In: Frank J (ed) Electron tomography: methods for three-dimensional visualization of structures in the cell, 2nd edn. Springer, New York, pp 163–186

    Chapter  Google Scholar 

  42. Gilbert PFC (1972) The reconstruction of a three-dimensional structure from projections and its application to electron microscopy. II. Direct methods. Proc R Soc Lond B 182:89–102

    Article  CAS  PubMed  Google Scholar 

  43. Carazo J-M, Herman GT, Sorzano COS, Marabini R (2006) Algorithms for three dimensional reconstruction from the imperfect projection data provided by electron microscopy. In: Frank J (ed) Electron tomography: methods for three-dimensional visualization of structures in the cell, 2nd edn. Springer, New York, pp 217–244

    Chapter  Google Scholar 

  44. Radermacher M (2006) Weighted back-projection methods. In: Frank J (ed) Electron tomography: methods for three-dimensional visualization of structures in the cell, 2nd edn. Springer, New York, pp 245–274

    Chapter  Google Scholar 

  45. Winkler H, Taylor KA (2013) Marker-free dual-axis tilt series alignment. J Struct Biol 182:117–124

    Article  PubMed Central  PubMed  Google Scholar 

  46. Frangakis AS, Hegerl R (2001) Noise reduction in electron tomographic reconstructions using nonlinear anisotropic diffusion. J Struct Biol 135:239–250

    Article  CAS  PubMed  Google Scholar 

  47. Fernandez JJ, Li S (2003) An improved algorithm for anisotropic nonlinear diffusion for denoising cryo-tomograms. J Struct Biol 144:152–161

    Article  PubMed  Google Scholar 

  48. Stalling D, Westerhoff M, Hege H-C (2005) Amira: a highly interactive system for visual data analysis. In: Hansen CD, Johnson CR (eds) The Visualization Handbook. Elsevier, London, pp 749–787

    Chapter  Google Scholar 

  49. Leunissen JL, Yi H (2009) Self-pressurized rapid freezing (SPRF): a novel cryofixation method for specimen preparation in electron microscopy. J Microsc 235:25–35

    Article  CAS  PubMed  Google Scholar 

  50. McDonald KL (2014) Out with the old and in with the new: rapid specimen preparation procedures for electron microscopy of sectioned biological material. Protoplasma 251:429–448

    Article  CAS  PubMed  Google Scholar 

  51. Egerton RF, Li P, Malac M (2004) Radiation damage in the TEM and SEM. Micron 35:399–409

    Article  CAS  PubMed  Google Scholar 

  52. Luther PK, Lawrence MC, Crowther RA (1988) A method for monitoring the collapse of plastic sections as a function of electron dose. Ultramicroscopy 24:7–18

    Article  CAS  PubMed  Google Scholar 

  53. Lucic V, Forster F, Baumeister W (2005) Structural studies by electron tomography: from cells to molecules. Annu Rev Biochem 74:833–865

    Article  CAS  PubMed  Google Scholar 

  54. Cardone G, Grunewald K, Steven AC (2005) A resolution criterion for electron tomography based on cross-validation. J Struct Biol 151:117–129

    Article  PubMed  Google Scholar 

  55. Unser M, Sorzano CO, Thevenaz P et al (2005) Spectral signal-to-noise ratio and resolution assessment of 3D reconstructions. J Struct Biol 149:243–255

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  56. Khan LA, Zhang H, Abraham N et al (2013) Intracellular lumen extension requires ERM-1-dependent apical membrane expansion and AQP-8-mediated flux. Nat Cell Biol 15:143–156

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Ken Nguyen and Willisa Liou for help in tissue preparation and operation of the Technai20 microscope, and Ashleigh Bouchelion and Emily Semaya for annotation of the tomograms shown in Figs. 2, 3, and 4. Chris Crocker created Fig. 1. Kevin Fisher provided technical help with Amira. Access to NYSBC facilities has been supported by the Albert Einstein College of Medicine. We also thank NIH OD 010943 for support to DHH. Data collected at NYSBC was made possible by a grant from NYSTAR. The NYSBC facility was constructed with support from Research Facilities Improvement Program Grant C06 RR017528 from the NIH National Center for Research Resources.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David H. Hall .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Hall, D.H., Rice, W.J. (2015). Electron Tomography Methods for C. elegans . In: Biron, D., Haspel, G. (eds) C. elegans. Methods in Molecular Biology, vol 1327. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-4939-2842-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2842-2_11

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-4939-2841-5

  • Online ISBN: 978-1-4939-2842-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics