Skip to main content

Crystallographic Data and Model Quality

  • Protocol
Nucleic Acid Crystallography

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1320))

Abstract

This article gives a consistent classification of sources of random and systematic errors in crystallographic data, and their influence on the averaged dataset obtained from a diffraction experiment. It discusses the relation between precision and accuracy and the crystallographic indicators used to estimate them, as well as topics like completeness and high-resolution cutoff. These concepts are applied in the context of presenting good practices for data processing with a widely used package, XDS. Recommendations are given for how to minimize the impact of several typical problems, like ice rings and shaded areas. Then, procedures for optimizing the processing parameters are explained. Finally, a simple graphical expression of some basic relations between data error and model error is suggested.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Borek D, Minor W, Otwinowski Z (2003) Measurement errors and their consequences in protein crystallography. Acta Crystallogr D 59:2031–2038

    Article  PubMed  Google Scholar 

  2. Evans PR (2006) Scaling and assessment of data quality. Acta Crystallogr D 62:72–82

    Article  PubMed  Google Scholar 

  3. Evans PR (2011) An introduction to data reduction: space-group determination, scaling and intensity statistics. Acta Crystallogr D 67:282–292

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Kabsch W (2010) Integration, scaling, space-group assignment and post-refinement. Acta Crystallogr D 66:133–144

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Kabsch W (2010) XDS. Acta Crystallogr D 66:125–132

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Bourenkov GP, Popov AN (2010) Optimization of data collection taking radiation damage into account. Acta Crystallogr D 66:409–419

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Liu Z-J, Chen L, Wu D, Ding W, Zhang H, Zhou W, Fu Z-Q, Wang B-C (2011) A multi-dataset data-collection strategy produces better diffraction data. Acta Crystallogr A 67:544–549

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Ravelli RBG, McSweeney SM (2000) The ‘fingerprint’ that X-rays can leave on structures. Structure 8:315–328

    Article  CAS  PubMed  Google Scholar 

  9. Burmeister WP (2000) Structural changes in a cryo-cooled protein crystal owing to radiation damage. Acta Crystallogr D 56:328–341

    Article  CAS  PubMed  Google Scholar 

  10. Diederichs K, McSweeney S, Ravelli RBG (2003) Zero-dose extrapolation as part of macromolecular synchrotron data reduction. Acta Crystallogr D 59:903–909

    Article  PubMed  Google Scholar 

  11. Diederichs K (2010) Quantifying instrument errors in macromolecular X-ray data sets. Acta Crystallogr D 66:733–740

    Article  CAS  PubMed  Google Scholar 

  12. Diederichs K (2009) Simulation of X-ray frames from macromolecular crystals using a ray-tracing approach. Acta Crystallogr D 65:535–542

    Article  CAS  PubMed  Google Scholar 

  13. Arndt UW, Crowther RA, Mallett JFW (1968) A computer-linked cathode-ray tube microdensitometer for x-ray crystallography. J Phys E Sci Instrum 1:510–516

    Article  CAS  Google Scholar 

  14. Wilson AJC (1950) Largest likely values for the reliability index. Acta Crystallogr 3:397–398

    Article  Google Scholar 

  15. Diederichs K, Karplus PA (1997) Improved R-factors for diffraction data analysis in macromolecular crystallography. Nat Struct Biol 4:269–274

    Article  CAS  PubMed  Google Scholar 

  16. Weiss MS (2001) Global indicators of X-ray data quality. J Appl Crystallogr 34:130–135

    Article  CAS  Google Scholar 

  17. Krojer T, von Delft F (2011) Assessment of radiation damage behaviour in a large collection of empirically optimized datasets highlights the importance of unmeasured complicating effects. J Synch Rad 18:387–397

    Article  CAS  Google Scholar 

  18. Schiltz M, Dumas P, Ennifar E, Flensburg C, Paciorek W, Vonrhein C, Bricogne G (2004) Phasing in the presence of severe site-specific radiation damage through dose-dependent modelling of heavy atoms. Acta Crystallogr D 60:1024–1031

    Article  CAS  PubMed  Google Scholar 

  19. Karplus PA, Diederichs K (2012) Linking Crystallographic Model and Data Quality. Science 336:1030–1033

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. White TW, Barty A, Stellato F, Holton JM, Kirian RA, Zatsepin NA, Chapman HN (2013) Crystallographic data processing for free-electron laser sources. Acta Crystallogr D69:1231–1240

    Google Scholar 

  21. Murshudov GN (2011) Some properties of crystallographic reliability index – Rfactor: effects of twinning. Appl Comput Math 10:250–261

    Google Scholar 

  22. Wlodawer A, Minor W, Dauter Z, Jaskolski M (2008) Protein crystallography for non-crystallographers, or how to get the best (but not more) from published macromolecular structures. FEBS J 275:1–21

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Diederichs K, Karplus PA (2013) Better models by discarding data? Acta Crystallogr D 69:1215–1222

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Evans PR, Murshudov GN (2013) How good are my data and what is the resolution? Acta Crystallogr D 69:1204–1214

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Faust A, Puehringer S, Darowski N, Panjikar S, Diederichs K, Mueller U, Weiss MS (2010) Update on the tutorial for learning and teaching macromolecular crystallography. J Appl Crystallogr 43:1230–1237

    Article  CAS  Google Scholar 

  26. Schneider TR, Sheldrick GM (2002) Substructure solution with SHELXD. Acta Crystallogr D 58:1772–1779

    Article  PubMed  Google Scholar 

  27. Diederichs K (2006) Some aspects of quantitative analysis and correction of radiation damage. Acta Crystallogr D 62:96–101

    Article  PubMed  Google Scholar 

Download references

Acknowledgement

The author wishes to thank P. Andrew Karplus and Bernhard Rupp for critically reading and commenting on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kay Diederichs .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Diederichs, K. (2016). Crystallographic Data and Model Quality. In: Ennifar, E. (eds) Nucleic Acid Crystallography. Methods in Molecular Biology, vol 1320. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2763-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2763-0_10

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2762-3

  • Online ISBN: 978-1-4939-2763-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics