Skip to main content

Tyramide Signal Amplification for Immunofluorescent Enhancement

  • Protocol
ELISA

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1318))

Abstract

Enzyme-linked signal amplification is a key technique used to enhance the immunohistochemical detection of protein, mRNA, and other molecular species. Tyramide signal amplification (TSA) is based on a catalytic reporter deposit in close vicinity to the epitope of interest. The advantages of this technique are its simplicity, enhanced sensitivity, high specificity, and compatibility with modern multi-label fluorescent microscopy. Here, we describe the use of a TSA kit to increase the signal of enhanced green fluorescent protein (eGFP) expressed under the control of Slc17a6 regulatory elements in the brain of a transgenic mouse. The labeling procedure consists of 6 basic steps: (1) tissue preparation, (2) blocking of nonspecific epitopes, (3) binding with primary antibody, (4) binding with horseradish peroxidase-conjugated secondary antibody, (5) reacting with fluorescent tyramide substrate, and (6) imaging of the signal. The procedures described herein detail these steps and provide additional guidance and background to assist novice users.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bobrow MN, Moen PT, Jr (2001) Tyramide signal amplification (TSA) systems for the enhancement of ISH signals in cytogenetics. Curr Protoc Cytom Chapter 8: Unit 8.9

    Google Scholar 

  2. Macechko PT, Krueger L, Hirsch B et al (1997) Comparison of immunologic amplification vs enzymatic deposition of fluorochrome-conjugated tyramide as detection systems for FISH. J Histochem Cytochem 45:359–363

    Article  CAS  PubMed  Google Scholar 

  3. Ormanns W, Schaffer R (1985) An alkaline-phosphatase staining method in avidin-biotin immunohistochemistry. Histochemistry 82:421–424

    Article  CAS  PubMed  Google Scholar 

  4. Bobrow MN, Harris TD, Shaughnessy KJ et al (1989) Catalyzed reporter deposition, a novel method of signal amplification. Application to immunoassays. J Immunol Methods 125:279–285

    Article  CAS  PubMed  Google Scholar 

  5. Bobrow MN, Shaughnessy KJ, Litt GJ (1991) Catalyzed reporter deposition, a novel method of signal amplification. II. Application to membrane immunoassays. J Immunol Methods 137:103–112

    Article  CAS  PubMed  Google Scholar 

  6. Porstmann B, Porstmann T, Nugel E et al (1985) Which of the commonly used marker enzymes gives the best results in colorimetric and fluorimetric enzyme immunoassays: horseradish peroxidase, alkaline phosphatase or beta-galactosidase? J Immunol Methods 79:27–37

    Article  CAS  PubMed  Google Scholar 

  7. Zaidi AU, Enomoto H, Milbrandt J et al (2000) Dual fluorescent in situ hybridization and immunohistochemical detection with tyramide signal amplification. J Histochem Cytochem 48:1369–1375

    Article  CAS  PubMed  Google Scholar 

  8. Bobrow MN, Moen PT Jr (2001) Tyramide Signal Amplification (TSA) Systems for the Enhancement of ISH Signals in Cytogenetics. Current Protocols in Cytometry. Chapter 8:Unit 8.9

    Google Scholar 

  9. Mayer G, Bendayan M (1997) Biotinyl-tyramide: a novel approach for electron microscopic immunocytochemistry. J Histochem Cytochem 45:1449–1454

    Article  CAS  PubMed  Google Scholar 

  10. Van Heusden J, de Jong P, Ramaekers F et al (1997) Fluorescein-labeled tyramide strongly enhances the detection of low bromodeoxyuridine incorporation levels. J Histochem Cytochem 45:315–319

    Article  PubMed  Google Scholar 

  11. Raap AK, van de Corput MP, Vervenne RA et al (1995) Ultra-sensitive FISH using peroxidase-mediated deposition of biotin- or fluorochrome tyramides. Hum Mol Genet 4:529–534

    Article  CAS  PubMed  Google Scholar 

  12. van Gijlswijk RP, Wiegant J, Vervenne R et al (1996) Horseradish peroxidase-labeled oligonucleotides and fluorescent tyramides for rapid detection of chromosome-specific repeat sequences. Cytogenet Cell Genet 75:258–262

    Article  PubMed  Google Scholar 

  13. Sako W, Morigaki R, Kaji R et al (2011) Identification and localization of a neuron-specific isoform of TAF1 in rat brain: implications for neuropathology of DYT3 dystonia. Neuroscience 189:100–107

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Okita S, Morigaki R, Koizumi H et al (2012) Cell type-specific localization of optineurin in the striatal neurons of mice: implications for neuronal vulnerability in Huntington’s disease. Neuroscience 202:363–370

    Article  CAS  PubMed  Google Scholar 

  15. Morigaki R, Sako W, Okita S et al (2011) Cyclin-dependent kinase 5 with phosphorylation of tyrosine 15 residue is enriched in striatal matrix compartment in adult mice. Neuroscience 189:25–31

    Article  CAS  PubMed  Google Scholar 

  16. Koizumi H, Morigaki R, Okita S et al (2013) Response of striosomal opioid signaling to dopamine depletion in 6-hydroxydopamine-lesioned rat model of Parkinson’s disease: a potential compensatory role. Front Cell Neurosci 7:74

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Zhao C, Eisinger B, Gammie SC (2013) Characterization of GABAergic neurons in the mouse lateral septum: a double fluorescence in situ hybridization and immunohistochemical study using tyramide signal amplification. PLoS One 8:e73750

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. van Gijlswijk RP, Zijlmans HJ, Wiegant J et al (1997) Fluorochrome-labeled tyramides: use in immunocytochemistry and fluorescence in situ hybridization. J Histochem Cytochem 45:375–382

    Article  PubMed  Google Scholar 

  19. Gong H, Byers DM (2003) Glutamate-41 of Vibrio harveyi acyl carrier protein is essential for fatty acid synthase but not acyl-ACP synthetase activity. Biochem Biophys Res Commun 302:35–40

    Article  CAS  PubMed  Google Scholar 

  20. Hnasko TS, Chuhma N, Zhang H et al (2010) Vesicular glutamate transport promotes dopamine storage and glutamate corelease in vivo. Neuron 65:643–656

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Hnasko TS, Hjelmstad GO, Fields HL et al (2012) Ventral tegmental area glutamate neurons: electrophysiological properties and projections. J Neurosci 32:15076–15085

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Kapuscinski J (1990) Interactions of nucleic acids with fluorescent dyes: spectral properties of condensed complexes. J Histochem Cytochem 38:1323–1329

    Article  CAS  PubMed  Google Scholar 

  23. Horling L, Neuhuber WL, Raab M (2012) Pitfalls using tyramide signal amplification (TSA) in the mouse gastrointestinal tract: endogenous streptavidin-binding sites lead to false positive staining. J Neurosci Methods 204:124–132

    Article  CAS  PubMed  Google Scholar 

  24. Bussolati G, Leonardo E (2008) Technical pitfalls potentially affecting diagnoses in immunohistochemistry. J Clin Pathol 61:1184–1192

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas S. Hnasko .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Faget, L., Hnasko, T.S. (2015). Tyramide Signal Amplification for Immunofluorescent Enhancement. In: Hnasko, R. (eds) ELISA. Methods in Molecular Biology, vol 1318. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2742-5_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2742-5_16

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2741-8

  • Online ISBN: 978-1-4939-2742-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics