Skip to main content

Construction of Conditional Knockdown Mutants in Mycobacteria

  • Protocol
  • First Online:
Mycobacteria Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1285))

Abstract

By definition, essential genes are fundamental to bacterial growth, yet the functions of many such genes remain unknown. Essential genes furthermore are central to the activity of most antibacterial drugs and among the most attractive targets for the development of new therapeutics. This chapter describes how synthetic genetic switches that utilize transcriptional repression, controlled proteolysis, or both to silence gene activity can be applied to construct and characterize conditional knockdown (cKD) mutants for essential genes in Mycobacterium smegmatis and Mycobacterium tuberculosis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Triccas JA, Parish T, Britton WJ, Gicquel B (1998) An inducible expression system permitting the efficient purification of a recombinant antigen from Mycobacterium smegmatis. FEMS Microbiol Lett 167(2):151–156

    Article  CAS  PubMed  Google Scholar 

  2. Gomez JE, Bishai WR (2000) whmD is an essential mycobacterial gene required for proper septation and cell division. Proc Natl Acad Sci U S A 97(15):8554–8559. doi:10.1073/pnas.140225297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Schnappinger D, Ehrt S (2014) Regulated expression systems for mycobacteria and their applications. Microbiol Spectr 2(1). doi:10.1128/microbiolspec.MGM1122-0018-2013

  4. Parish T, Turner J, Stoker NG (2001) amiA is a negative regulator of acetamidase expression in Mycobacterium smegmatis. BMC Microbiol 1:19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Roberts G, Muttucumaru DGN, Parish T (2003) Control of the acetamidase gene of Mycobacterium smegmatis by multiple regulators. FEMS Microbiol Lett 221(1):131–136

    Article  CAS  PubMed  Google Scholar 

  6. Blokpoel MC, Murphy HN, O’Toole R, Wiles S, Runn ES, Stewart GR, Young DB, Robertson BD (2005) Tetracycline-inducible gene regulation in mycobacteria. Nucleic Acids Res 33(2):e22. doi:10.1093/nar/gni023

    Article  PubMed  PubMed Central  Google Scholar 

  7. Carroll P, Muttucumaru DG, Parish T (2005) Use of a tetracycline-inducible system for conditional expression in Mycobacterium tuberculosis and Mycobacterium smegmatis. Appl Environ Microbiol 71(6):3077–3084. doi:10.1128/AEM.71.6.3077-3084.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Boldrin F, Casonato S, Dainese E, Sala C, Dhar N, Palu G, Riccardi G, Cole ST, Manganelli R (2010) Development of a repressible mycobacterial promoter system based on two transcriptional repressors. Nucleic Acids Res 38(12):e134. doi:10.1093/nar/gkq235

    Article  PubMed  PubMed Central  Google Scholar 

  9. Ehrt S, Guo XV, Hickey CM, Ryou M, Monteleone M, Riley LW, Schnappinger D (2005) Controlling gene expression in mycobacteria with anhydrotetracycline and Tet repressor. Nucleic Acids Res 33(2):e21. doi:10.1093/nar/gni013

    Article  PubMed  PubMed Central  Google Scholar 

  10. Carroll P, Brown AC, Hartridge AR, Parish T (2007) Expression of Mycobacterium tuberculosis Rv1991c using an arabinose-inducible promoter demonstrates its role as a toxin. FEMS Microbiol Lett 274(1):73–82. doi:10.1111/j.1574-6968.2007.00842.x

    Article  CAS  PubMed  Google Scholar 

  11. Lee BY, Clemens DL, Horwitz MA (2008) The metabolic activity of Mycobacterium tuberculosis, assessed by use of a novel inducible GFP expression system, correlates with its capacity to inhibit phagosomal maturation and acidification in human macrophages. Mol Microbiol 68(4):1047–1060. doi:10.1111/j.1365-2958.2008.06214.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Pandey AK, Raman S, Proff R, Joshi S, Kang CM, Rubin EJ, Husson RN, Sassetti CM (2009) Nitrile-inducible gene expression in mycobacteria. Tuberculosis 89(1):12–16. doi:10.1016/j.tube.2008.07.007

    Article  CAS  PubMed  Google Scholar 

  13. Seeliger JC, Topp S, Sogi KM, Previti ML, Gallivan JP, Bertozzi CR (2012) A riboswitch-based inducible gene expression system for mycobacteria. PLoS One 7(1):e29266. doi:10.1371/journal.pone.0029266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Forti F, Crosta A, Ghisotti D (2009) Pristinamycin-inducible gene regulation in mycobacteria. J Biotechnol 140(3–4):270–277. doi:10.1016/j.jbiotec.2009.02.001

    Article  CAS  PubMed  Google Scholar 

  15. Hillen W, Berens C (1994) Mechanisms underlying expression of Tn10 encoded tetracycline resistance. Annu Rev Microbiol 48:345–369. doi:10.1146/annurev.mi.48.100194.002021

    Article  CAS  PubMed  Google Scholar 

  16. Berens C, Hillen W (2004) Gene regulation by tetracyclines. Genet Eng 26:255–277

    CAS  Google Scholar 

  17. Krueger M, Scholz O, Wisshak S, Hillen W (2007) Engineered Tet repressors with recognition specificity for the tetO-4C5G operator variant. Gene 404(1–2):93–100. doi:10.1016/j.gene.2007.09.002

    Article  CAS  PubMed  Google Scholar 

  18. Krueger C, Berens C, Schmidt A, Schnappinger D, Hillen W (2003) Single-chain Tet transregulators. Nucleic Acids Res 31(12):3050–3056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Schnappinger D, Schubert P, Pfleiderer K, Hillen W (1998) Determinants of protein-protein recognition by four helix bundles: changing the dimerization specificity of Tet repressor. EMBO J 17(2):535–543. doi:10.1093/emboj/17.2.535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Scholz O, Henssler EM, Bail J, Schubert P, Bogdanska-Urbaniak J, Sopp S, Reich M, Wisshak S, Kostner M, Bertram R, Hillen W (2004) Activity reversal of Tet repressor caused by single amino acid exchanges. Mol Microbiol 53(3):777–789. doi:10.1111/j.1365-2958.2004.04159.x

    Article  CAS  PubMed  Google Scholar 

  21. Klotzsche M, Ehrt S, Schnappinger D (2009) Improved tetracycline repressors for gene silencing in mycobacteria. Nucleic Acids Res 37(6):1778–1788. doi:10.1093/nar/gkp015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kisker C, Hinrichs W, Tovar K, Hillen W, Saenger W (1995) The complex formed between Tet repressor and tetracycline-Mg2+ reveals mechanism of antibiotic resistance. J Mol Biol 247(2):260–280

    Article  CAS  PubMed  Google Scholar 

  23. Orth P, Schnappinger D, Hillen W, Saenger W, Hinrichs W (2000) Structural basis of gene regulation by the tetracycline inducible Tet repressor-operator system. Nat Struct Biol 7(3):215–219. doi:10.1038/73324

    Article  CAS  PubMed  Google Scholar 

  24. Lederer T, Kintrup M, Takahashi M, Sum PE, Ellestad GA, Hillen W (1996) Tetracycline analogs affecting binding to Tn10-Encoded Tet repressor trigger the same mechanism of induction. Biochemistry 35(23):7439–7446. doi:10.1021/bi952683e

    Article  CAS  PubMed  Google Scholar 

  25. Epe B, Woolley P (1984) The binding of 6-demethylchlortetracycline to 70S, 50S and 30S ribosomal particles: a quantitative study by fluorescence anisotropy. EMBO J 3(1):121–126

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Woong Park S, Klotzsche M, Wilson DJ, Boshoff HI, Eoh H, Manjunatha U, Blumenthal A, Rhee K, Barry CE 3rd, Aldrich CC, Ehrt S, Schnappinger D (2011) Evaluating the sensitivity of Mycobacterium tuberculosis to biotin deprivation using regulated gene expression. PLoS Pathog 7(9):e1002264. doi:10.1371/journal.ppat.1002264

    Article  PubMed  PubMed Central  Google Scholar 

  27. Marrero J, Rhee KY, Schnappinger D, Pethe K, Ehrt S (2010) Gluconeogenic carbon flow of tricarboxylic acid cycle intermediates is critical for Mycobacterium tuberculosis to establish and maintain infection. Proc Natl Acad Sci U S A 107(21):9819–9824. doi:10.1073/pnas.1000715107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Blumenthal A, Trujillo C, Ehrt S, Schnappinger D (2010) Simultaneous analysis of multiple Mycobacterium tuberculosis knockdown mutants in vitro and in vivo. PLoS One 5(12):e15667. doi:10.1371/journal.pone.0015667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Guo XV, Monteleone M, Klotzsche M, Kamionka A, Hillen W, Braunstein M, Ehrt S, Schnappinger D (2007) Silencing Mycobacterium smegmatis by using tetracycline repressors. J Bacteriol 189(13):4614–4623. doi:10.1128/JB.00216-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Hecht B, Muller G, Hillen W (1993) Noninducible Tet repressor mutations map from the operator binding motif to the C terminus. J Bacteriol 175(4):1206–1210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Wei JR, Krishnamoorthy V, Murphy K, Kim JH, Schnappinger D, Alber T, Sassetti CM, Rhee KY, Rubin EJ (2011) Depletion of antibiotic targets has widely varying effects on growth. Proc Natl Acad Sci U S A 108(10):4176–4181. doi:10.1073/pnas.1018301108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Gee CL, Papavinasasundaram KG, Blair SR, Baer CE, Falick AM, King DS, Griffin JE, Venghatakrishnan H, Zukauskas A, Wei JR, Dhiman RK, Crick DC, Rubin EJ, Sassetti CM, Alber T (2012) A phosphorylated pseudokinase complex controls cell wall synthesis in mycobacteria. Sci Signal 5(208):ra7. doi:10.1126/scisignal.2002525

    Article  PubMed  PubMed Central  Google Scholar 

  33. McGinness KE, Baker TA, Sauer RT (2006) Engineering controllable protein degradation. Mol Cell 22(5):701–707. doi:10.1016/j.molcel.2006.04.027

    Article  CAS  PubMed  Google Scholar 

  34. Kim JH, Wei JR, Wallach JB, Robbins RS, Rubin EJ, Schnappinger D (2011) Protein inactivation in mycobacteria by controlled proteolysis and its application to deplete the beta subunit of RNA polymerase. Nucleic Acids Res 39(6):2210–2220. doi:10.1093/nar/gkq1149

    Article  CAS  PubMed  Google Scholar 

  35. Kim JH, O’Brien KM, Sharma R, Boshoff HI, Rehren G, Chakraborty S, Wallach JB, Monteleone M, Wilson DJ, Aldrich CC, Barry CE 3rd, Rhee KY, Ehrt S, Schnappinger D (2013) A genetic strategy to identify targets for the development of drugs that prevent bacterial persistence. Proc Natl Acad Sci U S A 110(47):19095–19100. doi:10.1073/pnas.1315860110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Barik S, Sureka K, Mukherjee P, Basu J, Kundu M (2010) RseA, the SigE specific anti-sigma factor of Mycobacterium tuberculosis, is inactivated by phosphorylation-dependent ClpC1P2 proteolysis. Mol Microbiol 75(3):592–606. doi:10.1111/j.1365-2958.2009.07008.x

    Article  CAS  PubMed  Google Scholar 

  37. Kaur P, Agarwal S, Datta S (2009) Delineating bacteriostatic and bactericidal targets in mycobacteria using IPTG inducible antisense expression. PLoS One 4(6):e5923. doi:10.1371/journal.pone.0005923

    Article  PubMed  PubMed Central  Google Scholar 

  38. Bhatt A, Kremer L, Dai AZ, Sacchettini JC, Jacobs WR Jr (2005) Conditional depletion of KasA, a key enzyme of mycolic acid biosynthesis, leads to mycobacterial cell lysis. J Bacteriol 187(22):7596–7606. doi:10.1128/JB.187.22.7596-7606.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Gandotra S, Schnappinger D, Monteleone M, Hillen W, Ehrt S (2007) In vivo gene silencing identifies the Mycobacterium tuberculosis proteasome as essential for the bacteria to persist in mice. Nat Med 13(12):1515–1520. doi:10.1038/nm1683

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Abrahams GL, Kumar A, Savvi S, Hung AW, Wen S, Abell C, Barry CE 3rd, Sherman DR, Boshoff HI, Mizrahi V (2012) Pathway-selective sensitization of Mycobacterium tuberculosis for target-based whole-cell screening. Chem Biol 19(7):844–854. doi:10.1016/j.chembiol.2012.05.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. van Kessel JC, Hatfull GF (2007) Recombineering in Mycobacterium tuberculosis. Nat Methods 4(2):147–152. doi:10.1038/nmeth996

    Article  PubMed  Google Scholar 

  42. Pashley CA, Parish T (2003) Efficient switching of mycobacteriophage L5-based integrating plasmids in Mycobacterium tuberculosis. FEMS Microbiol Lett 229(2):211–215

    Article  CAS  PubMed  Google Scholar 

  43. van Soolingen D, Hermans PW, de Haas PE, Soll DR, van Embden JD (1991) Occurrence and stability of insertion sequences in Mycobacterium tuberculosis complex strains: evaluation of an insertion sequence-dependent DNA polymorphism as a tool in the epidemiology of tuberculosis. J Clin Microbiol 29(11):2578–2586

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dirk Schnappinger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Schnappinger, D., O’Brien, K.M., Ehrt, S. (2015). Construction of Conditional Knockdown Mutants in Mycobacteria. In: Parish, T., Roberts, D. (eds) Mycobacteria Protocols. Methods in Molecular Biology, vol 1285. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2450-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2450-9_9

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2449-3

  • Online ISBN: 978-1-4939-2450-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics