Skip to main content

Mycobacterial Recombineering

  • Protocol
  • First Online:
Mycobacteria Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1285))

Abstract

The precise knockout or modification of Mycobacterium tuberculosis genes has been critical for the identification of functions important for the growth and pathogenicity of this important bacterium. Schemes have been previously described, using both non-replicating vectors and transducing particles, for the introduction of gene knockout substrates into M. tuberculosis, where the endogenous recombination systems of the host (both homologous and illegitimate) compete for transfer of the modified allele to the chromosome. Recombineering technologies, first introduced in laboratory and pathogenic strains of Escherichia coli over the last 16 years, have been developed for use in M. tuberculosis. Described in this chapter is the use of the mycobacterial Che9c phage RecET recombination system, which has been used to make gene knockouts, reporter fusions, promoter replacements, and single base pair modifications within the M. tuberculosis and M. smegmatis chromosomes at very high frequency. Higher success rates, in a shorter period of time, are routinely observed when recombineering is compared to previously described M. tuberculosis gene knockout protocols.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Reyrat JM, Berthet FX, Gicquel B (1995) The urease locus of Mycobacterium tuberculosis and its utilization for the demonstration of allelic exchange in Mycobacterium bovis bacillus Calmette-Guerin. Proc Natl Acad Sci U S A 92(19):8768–8772

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Azad AK, Sirakova TD, Rogers LM, Kolattukudy PE (1996) Targeted replacement of the mycocerosic acid synthase gene in Mycobacterium bovis BCG produces a mutant that lacks mycosides. Proc Natl Acad Sci U S A 93(10):4787–4792

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Sander P, Meier A, Bottger EC (1995) rpsL+: a dominant selectable marker for gene replacement in mycobacteria. Mol Microbiol 16(5):991–1000

    Article  CAS  PubMed  Google Scholar 

  4. Pelicic V, Reyrat JM, Gicquel B (1996) Positive selection of allelic exchange mutants in Mycobacterium bovis BCG. FEMS Microbiol Lett 144(2–3):161–166

    Article  CAS  PubMed  Google Scholar 

  5. Pelicic V, Reyrat JM, Gicquel B (1996) Generation of unmarked directed mutations in mycobacteria, using sucrose counter-selectable suicide vectors. Mol Microbiol 20(5):919–925

    Article  CAS  PubMed  Google Scholar 

  6. Pelicic V, Reyrat JM, Gicquel B (1996) Expression of the Bacillus subtilis sacB gene confers sucrose sensitivity on mycobacteria. J Bacteriol 178(4):1197–1199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Pavelka MS Jr, Jacobs WR Jr (1999) Comparison of the construction of unmarked deletion mutations in Mycobacterium smegmatis, Mycobacterium bovis bacillus Calmette-Guerin, and Mycobacterium tuberculosis H37Rv by allelic exchange. J Bacteriol 181(16):4780–4789

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Pavelka MS Jr (2008) Allelic exchange of unmarked mutations in Mycobacterium tuberculosis. Methods Mol Biol 435:191–201

    Article  CAS  PubMed  Google Scholar 

  9. Kalpana GV, Bloom BR, Jacobs WR Jr (1991) Insertional mutagenesis and illegitimate recombination in mycobacteria. Proc Natl Acad Sci U S A 88(12):5433–5437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Khattak FA, Kumar A, Kamal E, Kunisch R, Lewin A (2012) Illegitimate recombination: an efficient method for random mutagenesis in Mycobacterium avium subsp. hominissuis. BMC Microbiol 12:204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Bardarov S, Bardarov S Jr, Pavelka MS Jr, Sambandamurthy V, Larsen M, Tufariello J, Chan J, Hatfull G, Jacobs WR Jr (2002) Specialized transduction: an efficient method for generating marked and unmarked targeted gene disruptions in Mycobacterium tuberculosis, M. bovis BCG and M. smegmatis. Microbiology 148(Pt 10):3007–3017

    Google Scholar 

  12. Court DL, Sawitzke JA, Thomason LC (2002) Genetic engineering using homologous recombination. Annu Rev Genet 36:361–388

    Article  CAS  PubMed  Google Scholar 

  13. Murphy KC (2011) Targeted chromosomal gene knockout using PCR fragments. Methods Mol Biol 765:27–42

    Article  CAS  PubMed  Google Scholar 

  14. Murphy KC (2012) Phage recombinases and their applications. Adv Virus Res 83:367–414

    Article  CAS  PubMed  Google Scholar 

  15. Sawitzke JA, Thomason LC, Costantino N, Bubunenko M, Datta S, Court DL (2007) Recombineering: in vivo genetic engineering in E. coli, S. enterica, and beyond. Methods Enzymol 421:171–199

    Article  CAS  PubMed  Google Scholar 

  16. van Kessel JC, Hatfull GF (2007) Recombineering in Mycobacterium tuberculosis. Nat Methods 4(2):147–152

    Article  PubMed  Google Scholar 

  17. van Kessel JC, Hatfull GF (2008) Efficient point mutagenesis in mycobacteria using single-stranded DNA recombineering: characterization of antimycobacterial drug targets. Mol Microbiol 67(5):1094–1107

    Article  PubMed  Google Scholar 

  18. Ioerger TR, O’Malley T, Liao R, Guinn KM, Hickey MJ, Mohaideen N, Murphy KC, Boshoff HI, Mizrahi V, Rubin EJ, Sassetti CM, Barry CE 3rd, Sherman DR, Parish T, Sacchettini JC (2013) Identification of new drug targets and resistance mechanisms in Mycobacterium tuberculosis. PLoS One 8(9):e75245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Wei JR, Krishnamoorthy V, Murphy K, Kim JH, Schnappinger D, Alber T, Sassetti CM, Rhee KY, Rubin EJ (2011) Depletion of antibiotic targets has widely varying effects on growth. Proc Natl Acad Sci U S A 108(10):4176–4181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Gee CL, Papavinasasundaram KG, Blair SR, Baer CE, Falick AM, King DS, Griffin JE, Venghatakrishnan H, Zukauskas A, Wei JR, Dhiman RK, Crick DC, Rubin EJ, Sassetti CM, Alber T (2012) A phosphorylated pseudokinase complex controls cell wall synthesis in mycobacteria. Sci Signal 5(208):ra7

    Article  PubMed  PubMed Central  Google Scholar 

  21. Ellis HM, Yu D, DiTizio T, Court DL (2001) High efficiency mutagenesis, repair, and engineering of chromosomal DNA using single-stranded oligonucleotides. Proc Natl Acad Sci U S A 98:6742–6746

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Murphy KC, Marinus MG (2010) RecA-independent single-stranded DNA oligonucleotide-mediated mutagenesis. F1000 Biol Rep 2:56

    PubMed  PubMed Central  Google Scholar 

  23. Cha RS, Zarbl H, Keohavong P, Thilly WG (1992) Mismatch amplification mutation assay (MAMA): application to the c-H-ras gene. PCR Methods Appl 2(1):14–20

    Article  CAS  PubMed  Google Scholar 

  24. Mosberg JA, Lajoie MJ, Church GM (2010) Lambda red recombination in Escherichia coli occurs through a fully single-stranded intermediate. Genetics 186(3):791–799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to acknowledge Graham Hatfull and Julia van Kessell for providing the che9c recombination genes and invaluable advice, Adrie J.C. Steyn for the pCreSacB-Kan plasmid, Dirk Schnappinger for reagents and advice, and Chitra Kanchagar for expert technical assistance. This work was supported by the Bill and Melinda Gates Foundation, the NIH (AI0645282, AI095208, and U19AI107774), and the Howard Hughes Medical Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher M. Sassetti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Murphy, K.C., Papavinasasundaram, K., Sassetti, C.M. (2015). Mycobacterial Recombineering. In: Parish, T., Roberts, D. (eds) Mycobacteria Protocols. Methods in Molecular Biology, vol 1285. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2450-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2450-9_10

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2449-3

  • Online ISBN: 978-1-4939-2450-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics