Skip to main content

Molecular Modeling of the Affinity Chromatography of Monoclonal Antibodies

  • Protocol
Affinity Chromatography

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1286))

Abstract

Molecular modeling is a methodology that offers the possibility of studying complex systems such as protein–ligand complexes from an atomistic point of view, making available information that can be difficultly obtained from experimental studies. Here, a protocol for the construction of molecular models of the interaction between antibodies and ligands that can be used for an affinity chromatography process is presented. The outlined methodology focuses mostly on the description of a procedure that may be adopted to determine the structure and free energy of interaction between the antibody and the affinity ligand. A procedure to extend the proposed methodology to include the effect of the environment (buffer solution, spacer, support matrix) is also briefly outlined.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Barroso T, Branco RJF, Aguiar-Ricardo A, Roque ACA (2014) Structural evaluation of an alternative protein A biomimetic ligand for antibody purification. J Comput Aided Mol Des 28:25–34

    Article  CAS  PubMed  Google Scholar 

  2. Branco RJF, Dias AMGC, Roque ACA (2012) Understanding the molecular recognition between antibody fragments and protein A biomimetic ligand. J Chromatogr A 1244:106–115

    Article  CAS  PubMed  Google Scholar 

  3. Huang B, Liu FF, Dong XY, Sun Y (2011) Molecular mechanism of the affinity interactions between protein A and human immunoglobulin G1 revealed by molecular simulations. J Phys Chem B 115:4168–4176

    Article  CAS  PubMed  Google Scholar 

  4. Huang B, Liu FF, Dong XY, Sun Y (2012) Molecular mechanism of the effects of salt and pH on the affinity between protein A and human immunoglobulin G1 revealed by molecular simulations. J Phys Chem B 116:424–433

    Article  CAS  PubMed  Google Scholar 

  5. Lin DQ, Tong HF, Wang HY, Yao SJ (2012) Molecular insight into the ligand-IgG interactions for 4-mercaptoethyl-pyridine based hydrophobic charge-induction chromatography. J Phys Chem B 116:1393–1400

    Article  CAS  PubMed  Google Scholar 

  6. Liu FF, Huang B, Dong XY, Sun Y (2013) Molecular basis for the dissociation dynamics of protein A-immunoglobulin G1 complex. PLoS One 8

    Google Scholar 

  7. Zhang L, Sun Y (2010) Molecular simulation of adsorption and its implications to protein chromatography: a review. Biochem Eng J 48:408–415

    Article  Google Scholar 

  8. Zhang L, Zhao G, Sun Y (2010) Effects of ligand density on hydrophobic charge induction chromatography: molecular dynamics simulation. J Phys Chem B 114:2203–2211

    Article  CAS  PubMed  Google Scholar 

  9. Salvalaglio M, Zamolo L, Busini V, Moscatelli D, Cavallotti C (2009) Molecular modeling of protein A affinity chromatography. J Chromatogr A 1216:8678–8686

    Article  CAS  PubMed  Google Scholar 

  10. Salvalaglio M, Cavallotti C (2012) Molecular modeling to rationalize ligand-support interactions in affinity chromatography. J Sep Sci 35:7–19

    Article  CAS  PubMed  Google Scholar 

  11. Moiani D, Salvalaglio M, Cavallotti C, Bujacz A, Redzynia I, Bujacz G, Dinon F, Pengo P, Fassina G (2009) Structural characterization of a protein A mimetic peptide dendrimer bound to human IgG. J Phys Chem B 113:16268–16275

    Article  CAS  PubMed  Google Scholar 

  12. Zamolo L, Busini V, Moiani D, Moscatelli D, Cavallotti C (2008) Molecular dynamic investigation of the interaction of supported affinity ligands with monoclonal antibodies. Biotechnol Prog 24:527–539

    Article  CAS  PubMed  Google Scholar 

  13. Jensen F (2006) Introduction to computational chemistry. Wiley, Chicester

    Google Scholar 

  14. van Gunsteren WF, Bakowies D, Baron R, Chandrasekhar I, Christen M, Daura X, Gee P, Geerke DP, Glaettli A, Huenenberger PH, Kastenholz MA, Ostenbrink C, Schenk M, Trzesniak D, van der Vegt NFA, Yu HB (2006) Biomolecular modeling: goals, problems, perspectives. Angew Chem 45:4064–4092

    Article  Google Scholar 

  15. Srinivasan J, Cheatham TE, Cieplak P, Kollman PA, Case DA (1998) Continuum solvent studies of the stability of DNA, RNA, and phosphoramidate – DNA helices. J Am Chem Soc 120:9401–9409

    Article  CAS  Google Scholar 

  16. Kollman PA, Massova I, Reyes C, Kuhn B, Huo SH, Chong L, Lee M, Lee T, Duan Y, Wang W, Donini O, Cieplak P, Srinivasan J, Case DA, Cheatham TE (2000) Calculating structures and free energies of complex molecules: combining molecular mechanics and continuum models. Acc Chem Res 33:889–897

    Article  CAS  PubMed  Google Scholar 

  17. Cunningham BC, Wells JA (1989) High-resolution epitope mapping of HGH-receptor interactions by alanine-scanning mutagenesis. Science 244:1081–1085

    Article  CAS  PubMed  Google Scholar 

  18. Massova I, Kollman PA (1999) Computational alanine scanning to probe protein-protein interactions: a novel approach to evaluate binding free energies. J Am Chem Soc 121:8133–8143

    Article  CAS  Google Scholar 

  19. Van der Spoel D, Lindahl E, Hess B, Groenhof G, Mark AE, Berendsen HJC (2005) GROMACS: fast, flexible, and free. J Comput Chem 26:1701–1718

    Article  Google Scholar 

  20. Baker NA, Sept D, Joseph S, Holst MJ, McCammon JA (2001) Electrostatics of nanosystems: application to microtubules and the ribosome. Proc Natl Acad Sci U S A 98:10037–10041

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. http://www.rcsb.org/pdb

  22. Salvalaglio M, Muscionico I, Cavallotti C (2010) Determination of energies and sites of binding of PFOA and PFOS to human serum albumin. J Phys Chem B 114:14860–14874

    Article  CAS  PubMed  Google Scholar 

  23. Busini V, Moiani D, Moscatelli D, Zamolo L, Cavallotti C (2006) Investigation of the influence of spacer arm on the structural evolution of affinity ligands supported on agarose. J Phys Chem B 110:23564–23577

    Article  CAS  PubMed  Google Scholar 

  24. Boi C, Busini V, Salvalaglio M, Cavallotti C, Sarti GC (2009) Understanding ligand-protein interactions in affinity membrane chromatography for antibody purification. J Chromatogr A 1216:8687–8696

    Article  CAS  PubMed  Google Scholar 

  25. Duan Y, Wu C, Chowdhury S, Lee MC, Xiong GM, Zhang W, Yang R, Cieplak P, Luo R, Lee T, Caldwell J, Wang JM, Kollman P (2003) A point-charge force field for molecular mechanics simulations of proteins based on condensed-phase quantum mechanical calculations. J Comput Chem 24:1999–2012

    Article  CAS  PubMed  Google Scholar 

  26. Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML (1983) Comparison of simple potential functions for simulating liquid water. J Chem Phys 79:926–936

    Article  CAS  Google Scholar 

  27. Wang JM, Wolf RM, Caldwell JW, Kollman PA, Case DA (2004) Development and testing of a general amber force field. J Comput Chem 25:1157–1174

    Article  CAS  PubMed  Google Scholar 

  28. Darden T, York D, Pedersen L (1993) Particle Mesh Ewald – an N.Log(N) method for Ewald sums in large systems. J Chem Phys 98:10089–10092

    Article  CAS  Google Scholar 

  29. Hess B, Bekker H, Berendsen HJC, Fraaije J (1997) LINCS: a linear constraint solver for molecular simulations. J Comput Chem 18:1463–1472

    Article  CAS  Google Scholar 

  30. Sitkoff D, Sharp KA, Honig B (1994) Accurate calculation of hydration free-energies using macroscopic solvent models. J Phys Chem 98:1978–1988

    Article  CAS  Google Scholar 

  31. Roux B (1995) The calculation of the potential of mean force using computer simulations. Comput Phys Commun 91:275–282

    Article  CAS  Google Scholar 

  32. Zamolo L, Salvalaglio M, Cavallotti C, Galarza B, Sadler C, Williams S, Hofer S, Horak J, Lindner W (2010) Experimental and theoretical investigation of effect of spacer arm and support matrix of synthetic affinity chromatographic materials for the purification of monoclonal antibodies. J Phys Chem B 114:9367–9380

    Article  CAS  PubMed  Google Scholar 

  33. Shukla D, Zamolo L, Cavallotti C, Trout BL (2011) Understanding the role of arginine as an Eeluent in affinity chromatography via molecular computations. J Phys Chem B 115:2645–2654

    Article  CAS  PubMed  Google Scholar 

  34. Lingenheil M, Denschlag R, Reichold R, Tavan P (2008) The “hot-solvent/cold-solute” problem revisited. J Chem Theory Comput 4:1293–1306

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlo Cavallotti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Paloni, M., Cavallotti, C. (2015). Molecular Modeling of the Affinity Chromatography of Monoclonal Antibodies. In: Reichelt, S. (eds) Affinity Chromatography. Methods in Molecular Biology, vol 1286. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2447-9_25

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2447-9_25

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2446-2

  • Online ISBN: 978-1-4939-2447-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics