Skip to main content

Does Super-Resolution Fluorescence Microscopy Obsolete Previous Microscopic Approaches to Protein Co-localization?

  • Protocol
  • First Online:
Membrane Trafficking

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1270))

Abstract

Conventional microscopy techniques, namely, the confocal microscope or deconvolution processes, are resolution limited to approximately 200–250 nm by the diffraction properties of light as developed by Ernst Abbe in 1873. This diffraction limit is appreciably above the size of most multi-protein complexes, which are typically 20–50 nm in diameter. In the mid-2000s, biophysicists moved beyond the diffraction barrier by structuring the illumination pattern and then applying mathematical principles and algorithms to allow a resolution of approximately 100 nm, sufficient to address protein subcellular co-localization questions. This “breaking” of the diffraction barrier, affording resolution beyond 200 nm, is termed super-resolution microscopy. More recent approaches include single-molecule localization (such as photoactivated localization microscopy (PALM)/stochastic optical reconstruction microscopy (STORM)) and point spread function engineering (such as stimulated emission depletion (STED) microscopy). In this review, we explain basic principles behind currently commercialized super-resolution setups and address advantages and considerations in applying these techniques to protein co-localization in biological systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Storrie B, Starr T, Forsten-Williams K (2008) Using quantitative fluorescence microscopy to probe organelle assembly and membrane trafficking. Methods Mol Biol 457:179–192

    Article  CAS  PubMed  Google Scholar 

  2. Abbe E (1873) Beitrage zur Theorie des Mikroskops und der mikroskopischen Wahrmehmung. Arc F Mikr Anat 9:413–420

    Article  Google Scholar 

  3. Murphy DB, Davidson MW (2013) Fundamentals of light microscopy and electronic imaging, 2nd edn. Wiley and Sons, Inc., Hoboken, NJ

    Google Scholar 

  4. McNally JG, Karpova T, Cooper J, Conchello JA (1999) Three-dimensional imaging by deconvolution microscopy. Methods 19(3):373–385

    Article  CAS  PubMed  Google Scholar 

  5. Hell SW, Dyba M, Jakobs S (2004) Concepts for nanoscale resolution in fluorescence microscopy. Curr Opin Neurobiol 14(5):599–609

    Article  CAS  PubMed  Google Scholar 

  6. Cavanagh HD, Petroll WM, Jester JV (1993) The application of confocal microscopy to the study of living systems. Neurosci Biobehav Rev 17(4):483–498

    Article  CAS  PubMed  Google Scholar 

  7. Gustafsson MG (2000) Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy. J Microsc 198(Pt 2):82–87

    Article  CAS  PubMed  Google Scholar 

  8. Betzig E, Patterson GH, Sougrat R, Lindwasser OW, Olenych S, Bonifacino JS, Davidson MW, Lippincott-Schwartz J, Hess HF (2006) Imaging intracellular fluorescent proteins at nanometer resolution. Science 313(5793):1642–1645

    Article  CAS  PubMed  Google Scholar 

  9. Rust MJ, Bates M, Zhuang X (2006) Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat Methods 3(10):793–795

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Hell SW, Wichmann J (1994) Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. Opt Lett 19(11):780–782

    Article  CAS  PubMed  Google Scholar 

  11. Lukosz WMM (1963) Optischen abbildung unter unberschreitung der beugungsbedingten auflosungsgrenze. J Mod Optic 10(3):241–255

    Google Scholar 

  12. Schermelleh L, Carlton PM, Haase S, Shao L, Winoto L, Kner P, Burke B, Cardoso MC, Agard DA, Gustafsson MG, Leonhardt H, Sedat JW (2008) Subdiffraction multicolor imaging of the nuclear periphery with 3D structured illumination microscopy. Science 320(5881):1332–1336

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Kner P, Chhun BB, Griffis ER, Winoto L, Gustafsson MG (2009) Super-resolution video microscopy of live cells by structured illumination. Nat Methods 6(5):339–342

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Chung E, Kim D, Cui Y, Kim YH, So PT (2007) Two-dimensional standing wave total internal reflection fluorescence microscopy: superresolution imaging of single molecular and biological specimens. Biophys J 93(5):1747–1757

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Shao L, Kner P, Rego EH, Gustafsson MG (2011) Super-resolution 3D microscopy of live whole cells using structured illumination. Nat Methods 8(12):1044–1046

    Article  CAS  PubMed  Google Scholar 

  16. Hofmann M, Eggeling C, Jakobs S, Hell SW (2005) Breaking the diffraction barrier in fluorescence microscopy at low light intensities by using reversibly photoswitchable proteins. Proc Natl Acad Sci U S A 102(49):17565–17569

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Hess ST, Girirajan TP, Mason MD (2006) Ultra-high resolution imaging by fluorescence photoactivation localization microscopy. Biophys J 91(11):4258–4272

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Heilemann M, van de Linde S, Mukherjee A, Sauer M (2009) Super-resolution imaging with small organic fluorophores. Angew Chem Int Ed Engl 48(37):6903–6908

    Article  CAS  PubMed  Google Scholar 

  19. Bates M, Huang B, Dempsey GT, Zhuang X (2007) Multicolor super-resolution imaging with photo-switchable fluorescent probes. Science 317(5845):1749–1753

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Murphy DB, Davidson MW (2013) Superresolution imaging. In: Fundamentals of light microscopy and imaging, 2nd edn., Hoboken, NJ: John Wiley & Sons, Inc., pp 331–355

    Google Scholar 

  21. Olivier N, Keller D, Rajan VS, Gonczy P, Manley S (2013) Simple buffers for 3D STORM microscopy. Biomed Opt Express 4(6):885–899

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Endesfelder U, Malkusch S, Flottmann B, Mondry J, Liguzinski P, Verveer PJ, Heilemann M (2011) Chemically induced photoswitching of fluorescent probes – a general concept for super-resolution microscopy. Molecules 16(4):3106–3118

    Article  CAS  PubMed  Google Scholar 

  23. Vogelsang J, Kasper R, Steinhauer C, Person B, Heilemann M, Sauer M, Tinnefeld P (2008) A reducing and oxidizing system minimizes photobleaching and blinking of fluorescent dyes. Angew Chem Int Ed Engl 47(29):5465–5469

    Article  CAS  PubMed  Google Scholar 

  24. Andresen M, Stiel AC, Folling J, Wenzel D, Schonle A, Egner A, Eggeling C, Hell SW, Jakobs S (2008) Photoswitchable fluorescent proteins enable monochromatic multilabel imaging and dual color fluorescence nanoscopy. Nat Biotechnol 26(9):1035–1040

    Article  CAS  PubMed  Google Scholar 

  25. Subach FV, Patterson GH, Manley S, Gillette JM, Lippincott-Schwartz J, Verkhusha VV (2009) Photoactivatable mCherry for high-resolution two-color fluorescence microscopy. Nat Methods 6(2):153–159

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Patterson GH, Lippincott-Schwartz J (2002) A photoactivatable GFP for selective photolabeling of proteins and cells. Science 297(5588):1873–1877

    Article  CAS  PubMed  Google Scholar 

  27. Chudakov DM, Verkhusha VV, Staroverov DB, Souslova EA, Lukyanov S, Lukyanov KA (2004) Photoswitchable cyan fluorescent protein for protein tracking. Nat Biotechnol 22(11):1435–1439

    Article  CAS  PubMed  Google Scholar 

  28. Fernandez-Suarez M, Ting AY (2008) Fluorescent probes for super-resolution imaging in living cells. Nat Rev Mol Cell Biol 9(12):929–943

    Article  CAS  PubMed  Google Scholar 

  29. Heilemann M, van de Linde S, Schuttpelz M, Kasper R, Seefeldt B, Mukherjee A, Tinnefeld P, Sauer M (2008) Subdiffraction-resolution fluorescence imaging with conventional fluorescent probes. Angew Chem Int Ed Engl 47(33):6172–6176

    Article  CAS  PubMed  Google Scholar 

  30. van de Linde S, Loschberger A, Klein T, Heidbreder M, Wolter S, Heilemann M, Sauer M (2011) Direct stochastic optical reconstruction microscopy with standard fluorescent probes. Nat Protoc 6(7):991–1009

    Article  PubMed  Google Scholar 

  31. Dempsey GT, Vaughan JC, Chen KH, Bates M, Zhuang X (2011) Evaluation of fluorophores for optimal performance in localization-based super-resolution imaging. Nat Methods 8(12):1027–1036

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. van de Linde S, Endesfelder U, Mukherjee A, Schuttpelz M, Wiebusch G, Wolter S, Heilemann M, Sauer M (2009) Multicolor photoswitching microscopy for subdiffraction-resolution fluorescence imaging. Photochem Photobiol Sci 8(4):465–469

    Article  PubMed  Google Scholar 

  33. Huang B, Jones SA, Brandenburg B, Zhuang X (2008) Whole-cell 3D STORM reveals interactions between cellular structures with nanometer-scale resolution. Nat Methods 5(12):1047–1052

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Westphal V, Rizzoli SO, Lauterbach MA, Kamin D, Jahn R, Hell SW (2008) Video-rate far-field optical nanoscopy dissects synaptic vesicle movement. Science 320(5873):246–249

    Article  CAS  PubMed  Google Scholar 

  35. Shroff H, Galbraith CG, Galbraith JA, Betzig E (2008) Live-cell photoactivated localization microscopy of nanoscale adhesion dynamics. Nat Methods 5(5):417–423

    Article  CAS  PubMed  Google Scholar 

  36. Kamykowski J, Carlton P, Sehgal S, Storrie B (2011) Quantitative immunofluorescence mapping reveals little functional coclustering of proteins within platelet alpha-granules. Blood 118(5):1370–1373

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We greatly appreciate the willingness of Applied Precision, Inc., a division of GE, Vutara, and Carl Zeiss to test samples on their instruments and discuss the implementation of technique. Work in the Storrie laboratory was supported by NIH grants, R01GM092960 and R01HL119393. Work in the Baldini laboratory is supported by NIH grant, R01DK080424.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian Storrie .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

MacDonald, L., Baldini, G., Storrie, B. (2015). Does Super-Resolution Fluorescence Microscopy Obsolete Previous Microscopic Approaches to Protein Co-localization?. In: Tang, B. (eds) Membrane Trafficking. Methods in Molecular Biology, vol 1270. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2309-0_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2309-0_19

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2308-3

  • Online ISBN: 978-1-4939-2309-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics