Skip to main content

Measuring Helicase Inhibition of the DEAD-Box Protein Dbp2 by Yra1

  • Protocol
  • First Online:
RNA Remodeling Proteins

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1259))

Abstract

Despite the highly conserved helicase core, individual DEAD-box proteins are specialized in diverse RNA metabolic processes. One mechanism that determines DEAD-box protein specificity is enzymatic regulation by other protein cofactors. In this chapter, we describe a protocol for purifying the Saccharomyces cerevisiae DEAD-box RNA helicase Dbp2 and RNA-binding protein Yra1 and subsequent analysis of helicase regulation. The experiments described here can be adapted to other RNA helicases and their purified cofactor(s).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Linder P, Fuller-Pace FV (2013) Looking back on the birth of DEAD-box RNA helicases. Biochim Biophys Acta 1829:750–755

    Article  CAS  PubMed  Google Scholar 

  2. Putnam AA, Jankowsky E (2013) DEAD-box helicases as integrators of RNA, nucleotide and protein binding. Biochim Biophys Acta 1829:884–893

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Jankowsky E (2011) RNA helicases at work: binding and rearranging. Trends Biochem Sci 36:19–29

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Jarmoskaite I, Russell R (2011) DEAD-box proteins as RNA helicases and chaperones. Wiley Interdiscip Rev RNA 2:135–152

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Klostermeier D, Rudolph MG (2009) A novel dimerization motif in the C-terminal domain of the Thermus thermophilus DEAD box helicase Hera confers substantial flexibility. Nucleic Acids Res 37:421–430

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Tsu CA, Kossen K, Uhlenbeck OC (2001) The Escherichia coli DEAD protein DbpA recognizes a small RNA hairpin in 23S rRNA. RNA 7:702–709

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Fuller-Pace FV, Nicol SM, Reid AD et al (1993) DbpA: a DEAD box protein specifically activated by 23s rRNA. EMBO J 12:3619–3626

    CAS  PubMed Central  PubMed  Google Scholar 

  8. Nicol SM, Fuller-Pace FV (1995) The “DEAD box” protein DbpA interacts specifically with the peptidyltransferase center in 23S rRNA. Proc Natl Acad Sci U S A 92:11681–11685

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Hardin JW, Hu YX, McKay DB (2010) Structure of the RNA binding domain of a DEAD-box helicase bound to its ribosomal RNA target reveals a novel mode of recognition by an RNA recognition motif. J Mol Biol 402:412–427

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Mohr G, Del Campo M, Mohr S et al (2008) Function of the C-terminal domain of the DEAD-box protein Mss116p analyzed in vivo and in vitro. J Mol Biol 375:1344–1364

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Mallam AL, Jarmoskaite I, Tijerina P et al (2011) Solution structures of DEAD-box RNA chaperones reveal conformational changes and nucleic acid tethering by a basic tail. Proc Natl Acad Sci U S A 108:12254–12259

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Bolger TA, Wente SR (2011) Gle1 is a multifunctional DEAD-box protein regulator that modulates Ded1 in translation initiation. J Biol Chem 286:39750–39759

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Granneman S, Lin C, Champion EA et al (2006) The nucleolar protein Esf2 interacts directly with the DExD/H box RNA helicase, Dbp8, to stimulate ATP hydrolysis. Nucleic Acids Res 34:3189–3199

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Hilbert M, Kebbel F, Gubaev A et al (2011) eIF4G stimulates the activity of the DEAD box protein eIF4A by a conformational guidance mechanism. Nucleic Acids Res 39:2260–2270

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Ma WK, Cloutier SC, Tran EJ (2013) The DEAD-box protein Dbp2 functions with the RNA-binding protein Yra1 to promote mRNP assembly. J Mol Biol 425:3824–3838

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Johnson SA, Cubberley G, Bentley DL (2009) Cotranscriptional recruitment of the mRNA export factor Yra1 by direct interaction with the 3′ end processing factor Pcf11. Mol Cell 33:215–226

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Yang Q, Del Campo M, Lambowitz AM et al (2007) DEAD-box proteins unwind duplexes by local strand separation. Mol Cell 28:253–263

    Article  CAS  PubMed  Google Scholar 

  18. Chen Y, Potratz JP, Tijerina P et al (2008) DEAD-box proteins can completely separate an RNA duplex using a single ATP. Proc Natl Acad Sci U S A 105:20203–20208

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Moreira BG, You Y, Behlke MA et al (2005) Effects of fluorescent dyes, quenchers, and dangling ends on DNA duplex stability. Biochem Biophys Res Commun 327:473–484

    Article  CAS  PubMed  Google Scholar 

  20. Young C, Karbstein K (2012) Analysis of cofactor effects on RNA helicases. Methods Enzymol 511:213–237

    Article  CAS  PubMed  Google Scholar 

  21. Portman DS, O’Connor JP, Dreyfuss G (1997) YRA1, an essential Saccharomyces cerevisiae gene, encodes a novel nuclear protein with RNA annealing activity. RNA 3:527–537

    CAS  PubMed Central  PubMed  Google Scholar 

  22. Yang Q, Jankowsky E (2005) ATP- and ADP-dependent modulation of RNA unwinding and strand annealing activities by the DEAD-box protein DED1. Biochemistry 44:13591–13601

    Article  CAS  PubMed  Google Scholar 

  23. Spahr PF, Hollingworth BR (1961) Purification and mechanism of action of ribonuclease from Escherichia Coli ribosomes. J Biol Chem 236:823–831

    CAS  Google Scholar 

  24. Grossman TH, Kawasaki ES, Punreddy SR et al (1998) Spontaneous cAMP-dependent derepression of gene expression in stationary phase plays a role in recombinant expression instability. Gene 209:95–103

    Article  CAS  PubMed  Google Scholar 

  25. Jankowsky E, Putnam A (2010) Duplex unwinding with DEAD-box proteins. Methods Mol Biol 587:245–264

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank members of the Tran lab for constructive criticism and detailed analysis of experimental methods. This work was supported by NIH grant R01GM097332 to E.J.T. and by P30 CA023168.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elizabeth J. Tran .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Ma, W.K., Tran, E.J. (2015). Measuring Helicase Inhibition of the DEAD-Box Protein Dbp2 by Yra1. In: Boudvillain, M. (eds) RNA Remodeling Proteins. Methods in Molecular Biology, vol 1259. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2214-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2214-7_12

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2213-0

  • Online ISBN: 978-1-4939-2214-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics