Skip to main content

Techniques for the Study of GPCR Heteromerization in Living Cells and Animal Models

  • Protocol
  • First Online:
Serotonin Receptor Technologies

Part of the book series: Neuromethods ((NM,volume 95))

Abstract

G protein-coupled receptors (GPCRs) have traditionally been considered to exist and function as monomeric structural units—hypothesis that is further supported by recent findings based on both membrane protein reconstitution systems and X-ray crystal structures. Nevertheless, a vast body of experimental data obtained over the past decade provides plausible evidence to support a model whereby close molecular proximity between two or more GPCRs at the plasma membrane affects receptor pharmacology and its intracellular signaling properties. Most of these findings, however, have been achieved in cultured cells, and hence the capacity of GPCRs to form dimeric or oligomeric complexes in whole animal models remains largely unknown. This chapter describes experimental approaches in vitro and in vivo that can be used to study GPCR dimerization/oligomerization, with special emphasis on heteromeric receptor complexes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Audet M, Bouvier M (2012) Restructuring G-protein-coupled receptor activation. Cell 151:14–23

    Article  CAS  PubMed  Google Scholar 

  2. Pierce KL, Premont RT, Lefkowitz RJ (2002) Seven-transmembrane receptors. Nat Rev Mol Cell Biol 3:639–650

    Article  CAS  PubMed  Google Scholar 

  3. Rosenbaum DM, Rasmussen SG, Kobilka BK (2009) The structure and function of G-protein-coupled receptors. Nature 459:356–363

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Kristiansen K (2004) Molecular mechanisms of ligand binding, signaling, and regulation within the superfamily of G-protein-coupled receptors: molecular modeling and mutagenesis approaches to receptor structure and function. Pharmacol Ther 103:21–80

    Article  CAS  PubMed  Google Scholar 

  5. Lefkowitz RJ (2004) Historical review: a brief history and personal retrospective of seven-transmembrane receptors. Trends Pharmacol Sci 25:413–422

    Article  CAS  PubMed  Google Scholar 

  6. Dixon RA, Kobilka BK, Strader DJ et al (1986) Cloning of the gene and cDNA for mammalian beta-adrenergic receptor and homology with rhodopsin. Nature 321:75–79

    Article  CAS  PubMed  Google Scholar 

  7. Henderson R, Unwin PN (1975) Three-dimensional model of purple membrane obtained by electron microscopy. Nature 257:28–32

    Article  CAS  PubMed  Google Scholar 

  8. Audet M, Bouvier M (2008) Insights into signaling from the beta2-adrenergic receptor structure. Nat Chem Biol 4:397–403

    Article  CAS  PubMed  Google Scholar 

  9. Kobilka BK (2011) Structural insights into adrenergic receptor function and pharmacology. Trends Pharmacol Sci 32:213–218

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Gonzalez-Maeso J (2011) GPCR oligomers in pharmacology and signaling. Mol Brain 4:20–26

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Gonzalez-Maeso J, Sealfon SC (2012) Functional selectivity in GPCR heterocomplexes. Mini Rev Med Chem 12:851–855

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Whorton MR, Bokoch MP, Rasmussen SG et al (2007) A monomeric G protein-coupled receptor isolated in a high-density lipoprotein particle efficiently activates its G protein. Proc Natl Acad Sci U S A 104:7682–7687

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Whorton MR, Jastrzebska B, Park PS et al (2008) Efficient coupling of transducin to monomeric rhodopsin in a phospholipid bilayer. J Biol Chem 283:4387–4394

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Milligan G (2007) G protein-coupled receptor dimerisation: molecular basis and relevance to function. Biochim Biophys Acta 1768:825–835

    Article  CAS  PubMed  Google Scholar 

  15. Milligan G (2009) G protein-coupled receptor hetero-dimerization: contribution to pharmacology and function. Br J Pharmacol 158:5–14

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Milligan G (2013) The prevalence, maintenance and relevance of GPCR oligomerization. Mol Pharmacol 84:158–169

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Albizu L, Moreno JL, Gonzalez-Maeso J et al (2011) Heteromerization of G protein-coupled receptors: relevance to neurological disorders and neurotherapeutics. CNS Neurol Disord Drug Targets 9:636–650

    Article  Google Scholar 

  18. Kaupmann K, Huggel K, Heid J et al (1997) Expression cloning of GABA(B) receptors uncovers similarity to metabotropic glutamate receptors. Nature 386:239–246

    Article  CAS  PubMed  Google Scholar 

  19. Couve A, Filippov AK, Connolly CN et al (1998) Intracellular retention of recombinant GABA(B) receptors. J Biol Chem 273:26361–26367

    Article  CAS  PubMed  Google Scholar 

  20. Jones KA, Borowsky B, Tamm JA et al (1998) GABA(B) receptors function as a heteromeric assembly of the subunits GABA(B)R1 and GABA(B)R2. Nature 396:674–679

    Article  CAS  PubMed  Google Scholar 

  21. Kaupmann K, Malitschek B, Schuler V et al (1998) GABA(B)-receptor subtypes assemble into functional heteromeric complexes. Nature 396:683–687

    Article  CAS  PubMed  Google Scholar 

  22. White JH, Wise A, Main MJ et al (1998) Heterodimerization is required for the formation of a functional GABA(B) receptor. Nature 396:679–682

    Article  CAS  PubMed  Google Scholar 

  23. Kniazeff J, Bessis AS, Maurel D et al (2004) Closed state of both binding domains of homodimeric mGlu receptors is required for full activity. Nat Struct Mol Biol 11:706–713

    Article  CAS  PubMed  Google Scholar 

  24. Nicoletti F, Bockaert J, Collingridge GL et al (2011) Metabotropic glutamate receptors: from the workbench to the bedside. Neuropharmacology 60:1017–1041

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Lopez-Gimenez JF, Canals M, Pediani JD et al (2007) The alpha1b-adrenoceptor exists as a higher-order oligomer: effective oligomerization is required for receptor maturation, surface delivery, and function. Mol Pharmacol 71:1015–1029

    Article  CAS  PubMed  Google Scholar 

  26. Carrillo JJ, Lopez-Gimenez JF, Milligan G (2004) Multiple interactions between transmembrane helices generate the oligomeric alpha1b-adrenoceptor. Mol Pharmacol 66:1123–1137

    Article  CAS  PubMed  Google Scholar 

  27. Guo W, Shi L, Filizola M et al (2005) Crosstalk in G protein-coupled receptors: changes at the transmembrane homodimer interface determine activation. Proc Natl Acad Sci U S A 102:17495–17500

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Guo W, Shi L, Javitch JA (2003) The fourth transmembrane segment forms the interface of the dopamine D2 receptor homodimer. J Biol Chem 278:4385–4388

    Article  CAS  PubMed  Google Scholar 

  29. Guo W, Urizar E, Kralikova M et al (2008) Dopamine D2 receptors form higher order oligomers at physiological expression levels. EMBO J 27:2293–2304

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Pin JP, Neubig R, Bouvier M et al (2007) International Union of Basic and Clinical Pharmacology. LXVII. Recommendations for the recognition and nomenclature of G protein-coupled receptor heteromultimers. Pharmacol Rev 59:5–13

    Article  CAS  PubMed  Google Scholar 

  31. Kern A, Albarran-Zeckler R, Walsh HE et al (2012) Apo-ghrelin receptor forms heteromers with DRD2 in hypothalamic neurons and is essential for anorexigenic effects of DRD2 agonism. Neuron 73:317–332

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Liu X-Y, Liu Z-C, Sun Y-G et al (2011) Unidirectional cross-activation of GRPR by MOR1D uncouples itch and analgesia induced by opioids. Cell 147:447–458

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Baba K, Benleulmi-Chaachoua A, Journe AS et al (2013) Heteromeric MT1/MT2 melatonin receptors modulate photoreceptor function. Sci Signal 6(296):ra89

    Article  PubMed  Google Scholar 

  34. Pei L, Li S, Wang M et al (2010) Uncoupling the dopamine D1–D2 receptor complex exerts antidepressant-like effects. Nat Med 16:1393–1395

    Article  CAS  PubMed  Google Scholar 

  35. Gonzalez-Maeso J, Ang RL, Yuen T et al (2008) Identification of a serotonin/glutamate receptor complex implicated in psychosis. Nature 452:93–97

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Fribourg M, Moreno JL, Holloway T et al (2011) Decoding the signaling of a GPCR heteromeric complex reveals a unifying mechanism of action of antipsychotic drugs. Cell 147:1011–1023

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Moreno JL, Holloway T, Albizu L et al (2011) Metabotropic glutamate mGlu2 receptor is necessary for the pharmacological and behavioral effects induced by hallucinogenic 5-HT2A receptor agonists. Neurosci Lett 493:76–79

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Moreno JL, Muguruza C, Umali A et al (2012) Identification of three residues essential for 5-HT2A-mGlu2 receptor heteromerization and its psychoactive behavioral function. J Biol Chem 287:44301–44319

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Moreno JL, Holloway T, Gonzalez-Maeso J (2013) G protein-coupled receptor heterocomplexes in neuropsychiatric disorders. Prog Mol Biol Transl Sci 117:187–205

    Article  CAS  PubMed  Google Scholar 

  40. Chazot PL, Pollard S, Stephenson FA (1998) Immunoprecipitation of receptors. Neuromethods 34:30079–30090

    Google Scholar 

  41. Jordan BA, Devi LA (1999) G-protein-coupled receptor heterodimerization modulates receptor function. Nature 399:697–700

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Rives ML, Vol C, Fukazawa Y et al (2009) Crosstalk between GABA(B) and mGlu1a receptors reveals new insight into GPCR signal integration. EMBO J 28:2195–2208

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Magalhaes AC, Holmes KD, Dale LB et al (2010) CRF receptor 1 regulates anxiety behavior via sensitization of 5-HT2 receptor signaling. Nat Neurosci 13:622–629

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Jonas KC, Rivero-Muller A, Huhtaniemi IT et al (2013) G protein-coupled receptor transactivation: from molecules to mice. Methods Cell Biol 117:433–450

    Article  CAS  PubMed  Google Scholar 

  45. Yadav PN, Kroeze WK, Farrell MS et al (2011) Antagonist functional selectivity: 5-HT2A serotonin receptor antagonists differentially regulate 5-HT2A receptor protein level in vivo. J Pharmacol Exp Ther 339:99–105

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  47. Wouters FS, Verveer PJ, Bastiaens PI (2001) Imaging biochemistry inside cells. Trends Cell Biol 11:203–211

    Article  CAS  PubMed  Google Scholar 

  48. Rizzo MA, Springer GH, Granada B et al (2004) An improved cyan fluorescent protein variant useful for FRET. Nat Biotechnol 22:445–449

    Article  CAS  PubMed  Google Scholar 

  49. Sekar RB, Periasamy A (2003) Fluorescence resonance energy transfer (FRET) microscopy imaging of live cell protein localizations. J Cell Biol 160:629–633

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. Boute N, Jockers R, Issad T (2002) The use of resonance energy transfer in high-throughput screening: BRET versus FRET. Trends Pharmacol Sci 23:351–354

    Article  CAS  PubMed  Google Scholar 

  51. Johnsson K (2009) Visualizing biochemical activities in living cells. Nat Chem Biol 5:63–65

    Article  CAS  PubMed  Google Scholar 

  52. Milligan G, Bouvier M (2005) Methods to monitor the quaternary structure of G protein-coupled receptors. FEBS J 272:2914–2925

    Article  CAS  PubMed  Google Scholar 

  53. Albizu L, Cottet M, Kralikova M et al (2010) Time-resolved FRET between GPCR ligands reveals oligomers in native tissues. Nat Chem Biol 6:587–594

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  54. Gupta A, Decaillot FM, Devi LA (2006) Targeting opioid receptor heterodimers: strategies for screening and drug development. AAPS J 8:E153–E159

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  55. Strange PG (1998) Three-state and two-state models. Trends Pharmacol Sci 19:85–86

    Article  CAS  PubMed  Google Scholar 

  56. Kenakin T (2002) Efficacy at G-protein-coupled receptors. Nat Rev Drug Discov 1:103–110

    Article  CAS  PubMed  Google Scholar 

  57. Kent RS, De Lean A, Lefkowitz RJ (1980) A quantitative analysis of beta-adrenergic receptor interactions: resolution of high and low affinity states of the receptor by computer modeling of ligand binding data. Mol Pharmacol 17:14–23

    CAS  PubMed  Google Scholar 

  58. De Lean A, Stadel JM, Lefkowitz RJ (1980) A ternary complex model explains the agonist-specific binding properties of the adenylate cyclase-coupled beta-adrenergic receptor. J Biol Chem 255:7108–7117

    PubMed  Google Scholar 

  59. Gonzalez-Maeso J, Sealfon SC (2009) Agonist-trafficking and hallucinogens. Curr Med Chem 16:1017–1027

    Article  CAS  PubMed  Google Scholar 

  60. Ferre S, von Euler G, Johansson B et al (1991) Stimulation of high-affinity adenosine A2 receptors decreases the affinity of dopamine D2 receptors in rat striatal membranes. Proc Natl Acad Sci U S A 88:7238–7241

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  61. Canal CE (2012) Head-twitch response in rodents induced by the hallucinogen 2, 5-dimethoxy-4-iodoamphetamine: a comprehensive history, a re-evaluation of mechanisms, and its utility as a model. Drug Test Anal 4:556–576

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  62. Moreno JL, Gonzalez-Maeso J (2013) Preclinical models of antipsychotic drug action. Int J Neuropsychopharmacol 16:2131–2144

    Article  CAS  PubMed  Google Scholar 

  63. Hanks JB, Gonzalez-Maeso J (2013) Animal models of serotonergic psychedelics. ACS Chem Neurosci 4:33–42

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  64. Gonzalez-Maeso J, Yuen T, Ebersole BJ et al (2003) Transcriptome fingerprints distinguish hallucinogenic and nonhallucinogenic 5-hydroxytryptamine 2A receptor agonist effects in mouse somatosensory cortex. J Neurosci 23:8836–8843

    CAS  PubMed  Google Scholar 

  65. Gonzalez-Maeso J, Weisstaub NV, Zhou M et al (2007) Hallucinogens recruit specific cortical 5-HT(2A) receptor-mediated signaling pathways to effect behavior. Neuron 53:439–452

    Article  CAS  PubMed  Google Scholar 

  66. Neve RL, Lim F (2001) Overview of gene delivery into cells using HSV-1-based vectors. Curr Protoc Neurosci Chapter 4:Unit 4 12

    Google Scholar 

  67. Neve RL, Neve KA, Nestler EJ et al (2005) Use of herpes virus amplicon vectors to study brain disorders. Biotechniques 39:381–391

    Article  CAS  PubMed  Google Scholar 

  68. Kurita M, Holloway T, Garcia-Bea A et al (2012) HDAC2 regulates atypical antipsychotic responses through the modulation of mGlu2 promoter activity. Nat Neurosci 15:1245–1254

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  69. Kurita M, Moreno JL, Holloway T et al (2013) Repressive epigenetic changes at the mGlu2 promoter in frontal cortex of 5-HT2A knockout mice. Mol Pharmacol 83:1166–1175

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  70. Dragulescu-Andrasi A, Chan CT, De A et al (2011) Bioluminescence resonance energy transfer (BRET) imaging of protein-protein interactions within deep tissues of living subjects. Proc Natl Acad Sci U S A 108:12060–12065

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  71. Hern JA, Baig AH, Mashanov GI et al (2010) Formation and dissociation of M1 muscarinic receptor dimers seen by total internal reflection fluorescence imaging of single molecules. Proc Natl Acad Sci U S A 107:2693–2698

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  72. Fonseca JM, Lambert NA (2009) Instability of a class a G protein-coupled receptor oligomer interface. Mol Pharmacol 75:1296–1299

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  73. Calebiro D, Rieken F, Wagner J et al (2013) Single-molecule analysis of fluorescently labeled G-protein-coupled receptors reveals complexes with distinct dynamics and organization. Proc Natl Acad Sci U S A 110:743–748

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  74. Hlavackova V, Zabel U, Frankova D et al (2012) Sequential inter- and intrasubunit rearrangements during activation of dimeric metabotropic glutamate receptor 1. Sci Signal 5(237):ra59

    Article  PubMed  Google Scholar 

  75. Calebiro D, Nikolaev VO, Persani L et al (2010) Signaling by internalized G-protein-coupled receptors. Trends Pharmacol Sci 31:221–228

    Article  CAS  PubMed  Google Scholar 

  76. Irannejad R, Tomshine JC, Tomshine JR et al (2013) Conformational biosensors reveal GPCR signalling from endosomes. Nature 495:534–538

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by National Institutes of Health (R01 MH084894), Dainippon Sumitomo Pharma, and NARSAD.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javier González-Maeso .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Moreno, J.L., Seto, J., Hanks, J.B., González-Maeso, J. (2015). Techniques for the Study of GPCR Heteromerization in Living Cells and Animal Models. In: Blenau, W., Baumann, A. (eds) Serotonin Receptor Technologies. Neuromethods, vol 95. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2187-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2187-4_2

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2186-7

  • Online ISBN: 978-1-4939-2187-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics