Skip to main content

Efficient Design and Assembly of Custom TALENs Using the Golden Gate Platform

  • Protocol
  • First Online:
Chromosomal Mutagenesis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1239))

Abstract

An important breakthrough in the field of genome engineering was the discovery of the modular Transcription Activator-Like Effector (TALE) DNA binding domain and the development of TALE nucleases (TALENs). TALENs enable researchers to make DNA double-strand breaks in target loci to create gene knockouts or introduce specific DNA sequence modifications. Precise genome engineering is increasingly being used to study gene function, develop disease models or create new traits in crop species. Underlying the boom in genome engineering is the striking simplicity and low cost of engineering new specificities of TALENs and other sequence-specific nucleases. In this chapter, we describe a rapid, inexpensive, and user-friendly protocol for custom TALEN construction based on one of the most popular TALEN assembly platforms, the Golden Gate cloning method. Using this protocol, ready-to-use TALENs with specificity for targets 13–32 bp long are constructed within 5 days.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gaj T, Gersbach CA, Barbas CF 3rd (2013) ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol 31:397–405

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Christian M, Cermak T, Doyle EL, Schmidt C, Zhang F, Hummel A, Bogdanove AJ, Voytas DF (2010) Targeting DNA double-strand breaks with TAL effector nucleases. Genetics 186:757–761

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Li T, Huang S, Jiang WZ, Wright D, Spalding MH, Weeks DP, Yang B (2011) TAL nucleases (TALNs): hybrid proteins composed of TAL effectors and FokI DNA-cleavage domain. Nucleic Acids Res 39:359–372

    Article  PubMed Central  PubMed  Google Scholar 

  4. Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, Hsu PD, Wu X, Jiang W, Marraffini L, Zhang F (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339:819–823

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Mali P, Yang L, Esvelt KM, Aac J, Guell M, DiCarlo JE, Norville JE, Church GM (2013) RNA-guided human genome engineering via Cas9. Science 339:823–826

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Bogdanove AJ, Schornack S, Lahaye T (2010) TAL effectors: finding plant genes for disease and defense. Curr Opin Plant Biol 13:394–401

    Article  CAS  PubMed  Google Scholar 

  7. Boch J et al (2009) Breaking the code of DNA binding specificity of TAL-type III effectors. Science 326:1509–1512

    Article  CAS  PubMed  Google Scholar 

  8. Moscou MJ, Bogdanove AJ (2009) A simple cipher governs DNA recognition by TAL effectors. Science 326:1501

    Article  CAS  PubMed  Google Scholar 

  9. Mak ANS, Bradley P, Cernadas RA, Bogdanove AJ, Stoddard BL (2012) The crystal structure of TAL effector PthXo1 bound to its DNA target. Science 335:716–719

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Deng D, Yan C, Pan X, Mahfouz M, Wang J, Zhu J, Shi Y, Yan N (2012) Structural basis for sequence-specific recognition of DNA by TAL effectors. Science 335:720–723

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Christian ML, Demorest ZL, Starker CG, Osborn MJ, Nyquist MD, Zhang Y, Carlson DF, Bradley P, Bogdanove AJ, Voytas DF (2012) Targeting G with TAL effectors: a comparison of activities of TALENs constructed with NN and NK repeat variable Di-residues. PLoS One 7:e45383

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Miller JC, Tan S, Qiao G, Barlow KA, Wang J, Xia DF et al (2011) A TALE nuclease architecture for efficient genome editing. Nat Biotechnol 29:143–148

    Article  CAS  PubMed  Google Scholar 

  13. Mussolino C, Morbitzer R, Lutge F, Dannemann N, Lahaye T, Cathomen T (2011) A novel TALE nuclease scaffold enables high genome editing activity in combination with low toxicity. Nucleic Acids Res 39:9283–9293

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Carlson DF, Tan W, Lillico SG, Stverakova D, Proudfoot C, Christian M, Voytas DF, Long CR, Whitelaw CBA, Fahrenkrug SC (2012) Efficient TALEN-mediated gene knockout in livestock. Proc Natl Acad Sci U S A 109:17382–17387

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Zhang Y, Zhang F, Li X, Baller JA, Qi Y, Starker CG, Bogdanove AJ, Voytas DF (2013) Transcription activator-like effector nucleases enable efficient plant genome engineering. Plant Physiol 161:20–27

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Engler C, Kandzia R, Marillonnet S (2008) A one pot, one step, precision cloning method with high throughput capability. PLoS One 3:e3647

    Article  PubMed Central  PubMed  Google Scholar 

  17. Engler C, Gruetzner R, Kandzia R, Marillonnet S (2009) Golden gate shuffling: a one-pot DNA shuffling method based on type IIs restriction enzymes. PLoS One 4:e5553

    Article  PubMed Central  PubMed  Google Scholar 

  18. Cermak T et al (2011) Efficient design and assembly of custom TALEN and other TAL effector based constructs for DNA targeting. Nucleic Acids Res 39:e82

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Morbitzer R, Elsaesser J, Hausner J, Lahaye T (2011) Assembly of custom TALE-type DNA binding domains by modular cloning. Nucleic Acids Res 39:5790–5799

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Geissler R, Scholze H, Hahn S, Streubel J, Bonas U, Behrens SE, Boch J (2011) Transcriptional activators of human genes with programmable DNA-specificity. PLoS One 6:e19509

    Article  CAS  PubMed  Google Scholar 

  21. Weber E, Gruetzner R, Werner S, Engler C, Marillonnet S (2011) Assembly of designer TAL effectors by Golden Gate cloning. PLoS One 6:e19722

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Li L, Piatek MJ, Atef A, Piatek A, Wibowo A, Fang X, Sabir JSM, Zhu JK, Mahfouz MM (2012) Rapid and highly efficient construction of TALE-based transcriptional regulators and nucleases for genome modification. Plant Mol Biol 78:407–416

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Zhang Z, Zhang S, Huang X, Orwig KE, Sheng Y (2013) Rapid assembly of customized TALENs into multiple delivery systems. PLoS One 8:e80281

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Liang J, Chao R, Abil Z, Bao Z, Zhao H (2013) FairyTALE: a high-throughput TAL effector synthesis platform. ACS Syn Biol 3:67. doi:10.1021/sb400109p

    Article  Google Scholar 

  25. Li T, Huang S, Zhao X, Wright DA, Carpenter S, Spalding MH, Weeks DP, Yang B (2011) Modularly assembled designer TAL effector nucleases for targeted gene knockout and gene replacement in eukaryotes. Nucleic Acids Res 39:6315–6325

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Zhang F, Cong L, Lodato S, Kosuri S, Church GM, Arlotta P (2011) Efficient construction of sequence-specific TAL effectors for modulating mammalian transcription. Nat Biotechnol 29:149–153

    Article  PubMed Central  PubMed  Google Scholar 

  27. Sanjana NE, Cong L, Zhou Y, Cunniff MM, Feng G, Zhang F (2012) A transcription activator-like effector toolbox for genome engineering. Nat Protoc 7:171–192

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Uhde-Stone C, Gor N, Chin T, Huang J, Lu B (2013) A do-it-yourself protocol for simple transcription activator-like effector assembly. Biol Proced Onl 15:3

    Article  Google Scholar 

  29. Yang J, Yuan P, Wen D, Sheng Y, Zhu S, Yu Y, Gao X, Wei W (2013) ULtiMATE system for rapid assembly of customized TAL effectors. PLoS One 8:e75649

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Schmid-Burgk JL, Schmidt T, Kaiser V, Höning K, Hornung V (2013) A ligation-independent cloning technique for high-throughput assembly of transcription activator–like effector genes. Nat Biotech 31:76–82

    Article  CAS  Google Scholar 

  31. Reyon D, Tsai SQ, Khayter C, Foden JA, Sander JD, Joung JK (2012) FLASH assembly of TALENs for high-throughput genome editing. Nat Biotech 30:460–465

    Article  CAS  Google Scholar 

  32. Briggs AW, Rios X, Chari R, Yang L, Zhang F, Mali P, Church GM (2012) Iterative capped assembly: rapid and scalable synthesis of repeat-module DNA such as TAL effectors from individual monomers. Nucleic Acids Res 40:e117

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Doyle EL, Booher NJ, Standage DS, Voytas DF, Brendel VP, VanDyk JK, Bogdanove AJ (2012) TAL effector-nucleotide targeted (TALE-NT) 2.0: tools for TAL effector design and target prediction. Nucleic Acids Res 40:117–122

    Article  Google Scholar 

  34. Meckler JF, Bhakta MS, Kim MS, Ovadia R, Habrian CH, Zytovich A, Yu A, Lockwood SH, Morbitzer R, Elsäesser J, Lahaye T, Segal DJ, Baldwin EP (2013) Quantitative analysis of TALE-DNA interactions suggests polarity effects. Nucleic Acids Res 41:4118–4128

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Morbitzer R, Römer P, Boch J, Lahaye T (2010) Regulation of selected genome loci using de novo-engineered transcription activator-like effector (TALE)-type transcription factors. Proc Natl Acad Sci U S A 107:21617–21622

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Streubel J, Blücher C, Landgraf A, Boch J (2012) TAL effector RVD specificities and efficiencies. Nat Biotech 30:593–595

    Article  CAS  Google Scholar 

  37. Huang P, Xiao A, Zhou M, Zhu Z, Lin S, Zhang B (2011) Heritable gene targeting in zebrafish using customized TALENs. Nat Biotech 29:699–700

    Article  Google Scholar 

  38. Deng D, Yin P, Yan C, Pan X, Gong X, Qi S, Xie T, Mahfouz M, Zhu JK, Yan N, Shi Y (2012) Recognition of methylated DNA by TAL effectors. Cell Res 22:1502–1504

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Valton J, Dupuy A, Daboussi F, Thomas S, Maréchal A, Macmaster R, Melliand K, Juillerat A, Duchateau P (2012) Overcoming transcription activator-like effector (TALE) DNA binding domain sensitivity to cytosine methylation. J Biol Chem 287:38427–38432

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Zhang F, Maeder ML, Unger-Wallace E, Hoshaw JP, Reyon D, Christian M, Li X, Pierick CJ, Dobbs D, Peterson T, Joung JK, Voytas DF (2010) High frequency targeted mutagenesis in Arabidopsis thaliana using zinc finger nucleases. Proc Natl Acad Sci U S A 107:12028–12033

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Doyon Y, Vo TD, Mendel MC, Greenberg SG, Wang J, Xia DF, Miller JC, Urnov FD, Gregory PD, Holmes MC (2011) Enhancing zinc-finger-nuclease activity with improved obligate heterodimeric architectures. Nat Methods 8:74–79

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

We thank Rebecca Greenstein for critical reading of the manuscript and helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel F. Voytas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Cermak, T., Starker, C.G., Voytas, D.F. (2015). Efficient Design and Assembly of Custom TALENs Using the Golden Gate Platform. In: Pruett-Miller, S. (eds) Chromosomal Mutagenesis. Methods in Molecular Biology, vol 1239. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1862-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1862-1_7

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1861-4

  • Online ISBN: 978-1-4939-1862-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics