Skip to main content

Chromatographic Molecular Weight Measurements for Heparin, Its Fragments and Fractions, and Other Glycosaminoglycans

  • Protocol
  • First Online:
Glycosaminoglycans

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1229))

Abstract

Glycosaminoglycan samples are usually polydisperse, consisting of molecules with differing length and differing sequence. Methods for measuring the molecular weight of heparin have been developed to assure the quality and consistency of heparin products for medicinal use, and these methods can be applied in other laboratory contexts. In the method described here, high-performance gel permeation chromatography is calibrated using appropriate heparin molecular weight markers or a single broad standard calibrant, and used to characterize the molecular weight distribution of polydisperse samples or the peak molecular weight of monodisperse, or approximately monodisperse, heparin fractions. The same technology can be adapted for use with other glycosaminoglycans.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Al Dieri R, Wagenvoord R, van Dedem GW, Beguin S, Hemker HC (2003) The inhibition of blood coagulation by heparins of different molecular weight is caused by a common functional motif—the C-domain. J Thromb Haemost 1:907–914

    Article  CAS  PubMed  Google Scholar 

  2. Kailemia MJ, Li L, Xu Y, Liu J, Linhardt RJ, Amster IJ (2013) Structurally informative tandem mass spectrometry of highly sulfated natural and chemoenzymatically synthesized heparin and heparan sulfate glycosaminoglycans. Mol Cell Proteomics 12:979–990

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Volpi N, Maccari F, Suwan J, Linhardt RJ (2012) Electrophoresis for the analysis of heparin purity and quality. Electrophoresis 33:1531–1537

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Sommers CD, Ye H, Kolinski RE, Nasr M, Buhse LF, Al-Hakim A, Keire DA (2011) Characterization of currently marketed heparin products: analysis of molecular weight and heparinase-I digest patterns. Anal Bioanal Chem 401:2445–2454

    Article  CAS  PubMed  Google Scholar 

  5. Mulloy B, Gee C, Wheeler SF, Wait R, Gray E, Barrowcliffe TW (1997) Molecular weight measurements of low molecular weight heparins by gel permeation chromatography. Thromb Haemost 77:668–674

    CAS  PubMed  Google Scholar 

  6. Mulloy B, Heath A, Shriver Z, Jameison F, Al-Hakim A, Morris TS, Szajek A (2014) Development of a compendial method for the chromatographic determination of molecular weight distributions for unfractionated heparin. Anal Bioanal Chem 460:4815–4823

    Google Scholar 

  7. Beirne J, Truchan H, Rao L (2011) Development and qualification of a size exclusion chromatography coupled with multiangle light scattering method for molecular weight determination of unfractionated heparin. Anal Bioanal Chem 399:717–725

    Article  CAS  PubMed  Google Scholar 

  8. Bertini S, Bisio A, Torri G, Bensi D, Terbojevich M (2005) Molecular weight determination of heparin and dermatan sulfate by size exclusion chromatography with a triple detector array. Biomacromolecules 6:168–173

    Article  PubMed  Google Scholar 

  9. Mulloy B (2002) Gel permeation chromatography of heparin. In: Volpi N (ed) Analytical techniques to evaluate the structure and function of natural polysaccharides, glycosaminoglycans. Research Signpost, Trivandrum

    Google Scholar 

  10. Knobloch JE, Shaklee PN (1997) Absolute molecular weight distribution of low-molecular-weight heparins by size-exclusion chromatography with multiangle laser light scattering detection. Anal Biochem 245:231–241

    Article  CAS  PubMed  Google Scholar 

  11. Huckerby TN, Sanderson PN, Nieduszynski IA (1986) N.M.R. studies of oligosaccharides obtained by degradation of bovine lung heparin with nitrous acid. Carbohydr Res 154:15–27

    Article  CAS  PubMed  Google Scholar 

  12. Khan S, Gor J, Mulloy B, Perkins SJ (2010) Semi-rigid solution structures of heparin by constrained X-ray scattering modelling: new insight into heparin-protein complexes. J Mol Biol 395:504–521

    Article  CAS  PubMed  Google Scholar 

  13. Khan S, Fung KW, Rodriguez E, Patel R, Gor J, Mulloy B, Perkins SJ (2013) The solution structure of heparan sulfate differs from that of heparin: implications for function. J Biol Chem 288:27737–27751

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Murphy KJ, Merry CL, Lyon M, Thompson JE, Roberts IS, Gallagher JT (2004) A new model for the domain structure of heparan sulfate based on the novel specificity of K5 lyase. J Biol Chem 279:27239–27245

    Article  CAS  PubMed  Google Scholar 

  15. Hasan J, Shnyder SD, Clamp AR, McGown AT, Bicknell R, Presta M, Bibby M, Double J, Craig S, Leeming D, Stevenson K, Gallagher JT, Jayson GC (2005) Heparin octasaccharides inhibit angiogenesis in vivo. Clin Cancer Res 11:8172–8179

    Article  CAS  PubMed  Google Scholar 

  16. Lauder RM, Huckerby TN, Nieduszynski IA, Sadler IH (2011) Characterisation of oligosaccharides from the chondroitin/dermatan sulphates: (1)H and (13)C NMR studies of oligosaccharides generated by nitrous acid depolymerisation. Carbohydr Res 346:2222–2227

    Article  CAS  PubMed  Google Scholar 

  17. Toida T, Sato K, Sakamoto N, Sakai S, Hosoyama S, Linhardt RJ (2009) Solvolytic depolymerization of chondroitin and dermatan sulfates. Carbohydr Res 344:888–893

    Article  CAS  PubMed  Google Scholar 

  18. Pomin VH, Park Y, Huang R, Heiss C, Sharp JS, Azadi P, Prestegard JH (2012) Exploiting enzyme specificities in digestions of chondroitin sulfates A and C: production of well-defined hexasaccharides. Glycobiology 22:826–838

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Volpi N, Bolognani L (1993) Glycosaminoglycans and proteins: different behaviours in high-performance size-exclusion chromatography. J Chromatogr 630:390–396

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barbara Mulloy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Mulloy, B., Hogwood, J. (2015). Chromatographic Molecular Weight Measurements for Heparin, Its Fragments and Fractions, and Other Glycosaminoglycans. In: Balagurunathan, K., Nakato, H., Desai, U. (eds) Glycosaminoglycans. Methods in Molecular Biology, vol 1229. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1714-3_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1714-3_11

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1713-6

  • Online ISBN: 978-1-4939-1714-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics