Skip to main content

Barley (Hordeum vulgare L.) Transformation Using Immature Embryos

  • Protocol
  • First Online:
Agrobacterium Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1223))

Abstract

Barley is a major crop species, and also has become a genetic model for the small grain temperate cereals. A draft barley genome sequence has recently been completed, opening many opportunities for candidate gene isolation and functionality testing. Thanks to the development of customizable endonucleases, also site-directed genome modification recently became feasible for higher plants, which marks the beginning of a new era of genetic engineering. The development of improved binary vectors and hypervirulent Agrobacterium tumefaciens strains has raised the efficiency of genetic transformation in barley to a level where the technique has become relatively routine. The transformation method described here involves immature barley embryos cocultivated with Agrobacterium after removal of their embryo axis. Critical adjustments to the protocol have included the supplementation of the cocultivation medium with the polyphenolic signaling compound acetosyringone at comparatively high concentration and the use of cysteine to reduce the extent of cellular oxidation upon agroinfection. In addition, the use of liquid, rather than solid, cocultivation medium promotes the throughput of the method. The protocol has delivered well over 10,000 transgenic barley plants over the past 10 years. Routine transformation efficiency, calculated on the basis of the recovery of independent transgenics per 100 explants, has reached about 25 % in cultivar (cv.) “Golden Promise”. The protocol has proven effective for more than 20 barley cultivars, although some adjustments to the culture conditions have had to be made in some cases. The transformation efficiency of cv. “Golden Promise” remains higher than that of any other cultivar tested.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. http://faostat.fao.org

  2. Repellin A, Baga M, Jauhar PP et al (2001) Genetic enrichment of cereal crops via alien gene transfer: new challenges. Plant Cell Tissue Organ Cult 64:159–183

    Article  CAS  Google Scholar 

  3. Jones HD (2005) Wheat transformation: current technology and applications to grain development and composition. J Cereal Sci 41:137–147

    Article  CAS  Google Scholar 

  4. Shrawat AK, Lörz H (2006) Agrobacterium-mediated transformation of cereals: a promising approach crossing barriers. Plant Biotechnol J 4:575–603

    Article  CAS  PubMed  Google Scholar 

  5. Goedeke S, Hensel G, Kapusi E et al (2007) Transgenic barley in fundamental research and biotechnology. Transgenic Plant J 1:104–117

    Google Scholar 

  6. Kumlehn J, Zimmermann G, Berger C et al (2010) Characters of transgenic plants and their application in plant production—Triticeae cereals. In: Kempken F, Jung C (eds) Genetic modification of plants—agriculture, horticulture & forestry. Springer, Heidelberg, pp 287–306

    Chapter  Google Scholar 

  7. Vasil V, Castillo AM, Fromm ME et al (1992) Herbicide resistant fertile transgenic wheat plants obtained by microprojectile bombardment of regenerable embryogenic callus. Biotechnology 10:667–674

    Article  CAS  Google Scholar 

  8. Wan Y, Lemaux PG (1994) Generation of large numbers of independently transformed fertile barley plants. Plant Physiol 104:37–48

    PubMed Central  CAS  PubMed  Google Scholar 

  9. Castillo AM, Vasil V, Vasil IK (1994) Rapid production of fertile transgenic plants of rye (Secale cereale L.). Biotechnology 12: 1366–1371

    Article  CAS  Google Scholar 

  10. Zimny J, Becker D, Brettschneider R et al (1995) Fertile, transgenic triticale (X triticosecale Wittmack). Mol Breed 1:155–164

    Article  Google Scholar 

  11. Hiei Y, Ohta S, Komari T et al (1994) Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. Plant J 6:271–282

    Article  CAS  PubMed  Google Scholar 

  12. Tingay S, McElroy D, Kalla R et al (1997) Agrobacterium tumefaciens-mediated barley transformation. Plant J 11:1369–1376

    Article  CAS  Google Scholar 

  13. Kumlehn J, Serazetdinova L, Hensel G et al (2006) Genetic transformation of barley (Hordeum vulgare L.) via infection of androgenetic pollen cultures with Agrobacterium tumefaciens. Plant Biotechnol J 4:251–261

    Article  CAS  PubMed  Google Scholar 

  14. Holme IB, Brinch-Pedersen H, Lange M et al (2006) Transformation of barley (Hordeum vulgare L.) by Agrobacterium tumefaciens infection of in vitro cultured ovules. Plant Cell Rep 25:1325–1335

    Article  CAS  PubMed  Google Scholar 

  15. Kumlehn J, Hensel G (2009) Genetic transformation technology in the Triticeae. Breed Sci 59:553–560

    Article  CAS  Google Scholar 

  16. Hensel G, Valkov V, Middlefell-Williams J et al (2008) Efficient generation of transgenic barley: the way forward to modulate plant-microbe interactions. J Plant Physiol 165:71–82

    Article  CAS  PubMed  Google Scholar 

  17. Murray F, Brettell R, Matthews P et al (2004) Comparison of Agrobacterium-mediated transformation of four barley cultivars using the GFP and GUS reporter genes. Plant Cell Rep 22:397–402

    Article  CAS  PubMed  Google Scholar 

  18. Holme IB, Brinch-Pedersen H, Lange M et al (2008) Transformation of different barley (Hordeum vulgare L.) cultivars by Agrobacterium tumefaciens infection of in vitro cultured ovules. Plant Cell Rep 27:1833–1840

    Article  CAS  PubMed  Google Scholar 

  19. Coronado MJ, Hensel G, Broeders S et al (2005) Immature pollen-derived doubled haploid formation in barley cv. Golden Promise as a tool for transgene recombination. Acta Physiol Plant 27:591–599

    Article  CAS  Google Scholar 

  20. Lange M, Vincze E, Møller MG et al (2006) Molecular analysis of transgene and vector backbone integration into the barley genome following Agrobacterium-mediated transformation. Plant Cell Rep 25:815–820

    Article  CAS  PubMed  Google Scholar 

  21. Matthews PR, Wang MB, Waterhouse PM et al (2001) Marker gene elimination from transgenic barley, using cotransformation with adjacent ‘twin T-DNAs’ on a standard Agrobacterium transformation vector. Mol Breed 7:195–202

    Article  CAS  Google Scholar 

  22. Jin SG, Komari T, Gordon MP et al (1987) Genes responsible for the supervirulence phenotype of Agrobacterium tumefaciens A281. J Bacteriol 169:4417–4425

    PubMed Central  CAS  PubMed  Google Scholar 

  23. Komori T, Imayama T, Kato N et al (2007) Current status of binary vectors and superbinary vectors. Plant Physiol 145:1155–1160

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Itoh Y, Watson JM, Haas D et al (1984) Genetic and molecular characterization of the Pseudomonas plasmid pVS1. Plasmid 11:206–220

    Article  CAS  PubMed  Google Scholar 

  25. Himmelbach A, Zierold U, Hensel G et al (2007) A set of modular binary vectors for transformation of cereals. Plant Physiol 145:1192–1200

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Lazo GR, Stein PA, Ludwig RA (1991) A DNA transformation-competent Arabidopsis genomic library in Agrobacterium. Biotechnology 9:963–967

    Article  CAS  PubMed  Google Scholar 

  27. Yeo FKS, Hensel G, Vozabova T et al (2013) Golden SusPtrit: a genetically well transformable barley line for studies on the resistance to rust fungi. Theor Appl Genet. doi:10.1007/s00122-013-2221-7

    PubMed  Google Scholar 

  28. Chiu WL, Niwa Y, Zeng W et al (1996) Engineered GFP as a vital reporter in plants. Curr Biol 6:325–330

    Article  CAS  PubMed  Google Scholar 

  29. Christensen AH, Quail PH (1996) Ubiquitin promoter-based vectors for high-level expression of selectable and/or screenable marker genes in monocotyledonous plants. Transgen Res 5:213–218

    Article  CAS  Google Scholar 

  30. Hausmann L, Töpfer R (1999) Entwicklung von Plasmid-Vektoren. Vortr Pflanzenzüchtung 45:153–171

    Google Scholar 

  31. Garfinkel DJ, Nester EW (1980) Agrobacterium tumefaciens mutants affected in crown gall tumorigenesis and octopine catabolism. J Bacteriol 144:732–743

    PubMed Central  CAS  PubMed  Google Scholar 

  32. Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15: 473–497

    Article  CAS  Google Scholar 

  33. Hood EE, Helmer GL, Fraley RT et al (1986) The hypervirulence of Agrobacterium tumefaciens A281 is encoded in the region of pTiBo542 outside the T-DNA. J Bacteriol 168:1291–1301

    PubMed Central  CAS  PubMed  Google Scholar 

  34. Komari T, Hiei Y, Saito Y et al (1996) Vectors carrying two separate T-DNAs for co-transformation of higher plants mediated by Agrobacterium tumefaciens and segregation of transformants free from selection markers. Plant J 10:165–174

    Article  CAS  PubMed  Google Scholar 

  35. Olhoft PM, Somers DA (2001) L-Cysteine increases Agrobacterium-mediated T-DNA delivery into soybean cotyledonary-node cells. Plant Cell Rep 20:706–711

    Article  CAS  Google Scholar 

  36. Patel M, Johnson JS, Brettell RIS et al (2000) Transgenic barley expressing a fungal xylanase gene in the endosperm of the developing grains. Mol Breed 6:113–123

    Article  CAS  Google Scholar 

  37. Fang YD, Akula C, Altpeter F (2002) Agrobacterium-mediated barley (Hordeum vulgare L.) transformation using green fluorescent protein as a visual marker and sequence analysis of the T-DNA::barley genomic DNA junctions. J Plant Physiol 159:1131–1138

    Article  CAS  Google Scholar 

  38. Trifonova A, Madsen S, Olesen A (2001) Agrobacterium-mediated transgene delivery and integration into barley under a range of in vitro culture conditions. Plant Sci 162: 871–880

    Article  Google Scholar 

  39. Lemaux PG, Cho MJ, Zhang S et al (1998) Transgenic cereals: Hordeum vulgare L. In: Vasil IK (ed) Molecular improvement of cereal crops. Kluwer Academic Publishers, UK, pp 255–316

    Google Scholar 

Download references

Acknowledgement

We are grateful to the Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben for continuously providing excellent working conditions for our research group.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Goetz Hensel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Marthe, C., Kumlehn, J., Hensel, G. (2015). Barley (Hordeum vulgare L.) Transformation Using Immature Embryos. In: Wang, K. (eds) Agrobacterium Protocols. Methods in Molecular Biology, vol 1223. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1695-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1695-5_6

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-1694-8

  • Online ISBN: 978-1-4939-1695-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics