Skip to main content

Clovers (Trifolium spp.)

  • Protocol
  • First Online:
Agrobacterium Protocols

Abstract

Clovers (Trifolium spp.) constitute one of the major forage legumes widely grown for its rich protein content and its major role in maintaining environmental sustainability by improving the soil fertility. Gene technology can assist plant improvement efforts in clovers (Trifolium spp.), aiming to improve forage quality, yield, and adaptation to biotic and abiotic stresses. An efficient and reproducible protocol for Agrobacterium-mediated transformation of a range of Trifolium species, using cotyledonary explants and different selectable marker genes, is described. The protocol is robust and allows for genotype and Agrobacterium strain-independent transformation of clovers. Stable meiotic transmission of transgenes has been demonstrated for selected transgenic clovers carrying single T-DNA inserts recovered from Agrobacterium-mediated transformation. This methodology can also be successfully used for “isogenic transformation” in clovers: the generation of otherwise identical plants with and without the transgene from the two cotyledons of a single seed. Stable transgenes may be used in further functional genomics, develop new traits and profile gene expression using reporters, and facilitate purification of tissue or single cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Russelle M (2001) Alfalfa. Am Sci 89:252–259

    Article  Google Scholar 

  2. Graham PH, Vance CP (2003) Legumes: importance and constraints to greater use. Plant Physiol 131:872–877

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Thomas D, Sumberg JE (1995) A review of the evaluation and use of tropical forage legumes in sub-Saharan Africa. Agric Ecosystem Environ 54:151–163

    Article  Google Scholar 

  4. Giller KE (2001) Nitrogen fixation in tropical cropping systems. CABI, Wallingford, UK

    Book  Google Scholar 

  5. Ulyatt MJ (1973) The feeding value of herbage. In: Butler GW, Bailey RW (eds) Chemistry and biochemistry of herbage. Academic Press, London, pp 131–178

    Google Scholar 

  6. Harris SL, Clark DA, Auldist MJ, Waugh CD, Laboyrie PG (1997) Optimum white clover content for dairy pastures. Proc New Zeal Grassland Assoc 59:29–33

    Google Scholar 

  7. Harris SL, Clark DA, Laboyrie PJ (1998) Birdsfoot trefoil – an alternative legume for New Zealand dairy systems. Proc New Zeal Grassland Assoc 60:99–103

    Google Scholar 

  8. Mouradov A, Panter S, Labandera M, Ludlow E, Emmerling M, Spangenberg G (2003) In: Wang K (ed) Clovers (Trifolium spp.) Methods in molecular biology, vol 343: Agrobacterium protocols, 2/e, vol 1, Humana Press Inc., Totowa, NJ, pp 325–335

    Google Scholar 

  9. Woodfield DR, Clark DA (2009) Do forage legumes have a role in modern dairy farming systems? Ir J Agr Food Rec 48:137–147

    Google Scholar 

  10. Abeyenayake SW, Panter S, Chapman R, Webster T, Rochfort S, Mouradov A, Spangenberg G (2012) Biosynthesis of proanthocyanidins in White clover flowers: cross talk within the flavonoid pathway. Plant Physiol 158:666–678

    Article  Google Scholar 

  11. Xie DY, Sharma SB, Wright E, Wang ZY, Dixon RA (2006) Metabolic engineering of proanthocyanidins through co-expression of anthocyanidin reductase and the PAP1 MYB transcription factor. Plant J 45:895–907

    Article  CAS  PubMed  Google Scholar 

  12. Hancock KR, Collette V, Fraser K, Greig M, Xue H, Richardson K, Jones C, Rasmussen S (2012) Expression of the R2R3-MYB transcription factor TaMYB14 from Trifolium arvense activates proanthocyanidin biosynthesis in legumes Trifolium repens and Medicago sativa. Plant Physiol 159:1204–1220

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Campbell CL, Moyer JW (1984) Yield responses of six white clover clones to virus infection under field condition. Plant Dis 68:1033–1035

    Article  Google Scholar 

  14. Dudas B, Woodfield DR, Tong PM et al (1998) Estimating the agronomic impact of white clover mosaic virus on white clover performance in the North Island of New Zealand. N Z J Agr Res 41:171–178

    Article  Google Scholar 

  15. Gibson PB, Barnett OW, Skipper HD, McLaughlin MR (1981) Effects of three viruses on growth of white clover. Plant Dis 65:50–51

    Article  Google Scholar 

  16. Latch GCM, Skipp RA (1987) Diseases. In: Baker MJ, Williams WM (eds) White clover. CAB International, UK, pp 421–446

    Google Scholar 

  17. Barnett OW, Gibson PB (1975) Identification and prevalence of white clover viruses and the resistance of Trifolium species to these viruses. Crop Sci 15:32–37

    Article  Google Scholar 

  18. Crill P, Hanson EW, Hagedorn DJ (1971) Resistance and tolerance to alfalfa mosaic virus in alfalfa. Phytopathology 61:371–379

    Article  Google Scholar 

  19. Kalla R, Chu P, Spangenberg G (2001) Molecular breeding of forage legumes for virus resistance. In: Spangenberg G (ed) Molecular breeding of forage crops, proceedings of the 2nd international symposium, molecular breeding of forage crops, Kluwer Academic Publishers, Dordrecht, The Netherlands, pp 219–237

    Google Scholar 

  20. Panter S, Chu PG, Ludlow E, Garrett R, Kalla R, Jahufer MZZ, de Lucas Arbiza A, Rochfort S, Mouradov A, Smith AKF, Spangenberg G (2012) Molecular breeding of transgenic white clover (Trifolium repens L.) with field resistance to Alfalfa mosaic virus through the expression of its coat protein gene. Transgenic Res 21:619–632

    Article  CAS  PubMed  Google Scholar 

  21. Emmerling M, Chu P, Smith K, Kalla R, Spangenberg G (2004) Field evaluation of transgenic white clover with AMV immunity and development of elite transgenic germplasm. In: Hopkins A, Wang ZY, Mian R, Sledge M, Barker R (eds) Molecular breeding of forage and turf, proceedings of the 3rd international symposium, molecular breeding of forage and turf. Kluwer Academic Publishers, Dordrecht, The Netherlands, pp 359–366

    Google Scholar 

  22. Larkin PJ, Gibson JM, Mathesius U et al (1996) Transgenic white clover. Studies with the auxin-responsive promoter, GH3, in root gravitropism and lateral root development. Transgenic Res 5:325–335

    Article  CAS  PubMed  Google Scholar 

  23. Ding Y-L, Aldao-Humble G, Ludlow E et al (2003) Efficient plant regeneration and Agrobacterium-mediated transformation in Medicago and Trifolium species. Plant Sci 165:1419–1427

    Article  CAS  Google Scholar 

  24. Lin Y-H, Ludlow E, Kalla R, Pallaghy C, Emmerling M, Spangenberg G (2003) Organ-specific, developmentally-regulated and abiotic stress-induced activities of four Arabidopsis thaliana promoters in transgenic white clover (Trifolium repens L.). Plant Sci 165: 1437–1444

    Article  CAS  Google Scholar 

  25. Tanner GJ, Francki KT, Abrahams S, Watson JM, Larkin PJ, Ashton AR (2003) Proanthocyanidin biosynthesis in plants. Purification of legume leucoanthocyanidin reductase and molecular cloning of its cDNA. J Biol Chem 278:31647–31656

    Article  CAS  PubMed  Google Scholar 

  26. Khan MRI, Heath LC, Spencer D, Higgins TJV (1994) Agrobacterium-mediated transformation of subterranean clover (Trifolium subterraneum L.). Plant Physiol 105:81–88

    PubMed Central  CAS  PubMed  Google Scholar 

  27. McKersie BD, Brown DCW (eds) (1997) Biotechnology and the improvement of forage legumes. CAB International, Wallingford, Oxon, UK

    Google Scholar 

  28. White DWR, Voisey C (1994) Prolific direct plant regeneration from cotyledons of white clover. Plant Cell Rep 13:303–308

    Article  CAS  PubMed  Google Scholar 

  29. Trieu AT, Harrison MJ (1996) Rapid transformation of Medicago truncatula: regeneration via shoot organogenesis. Plant Cell Rep 16: 6–11

    Article  CAS  PubMed  Google Scholar 

  30. Beattie LD, Garrett RG (1995) Adventitious shoot production from immature embryos of white clover. Plant Cell Tissue Org Cult 42:67–72

    Article  Google Scholar 

  31. Beach H, Smith RR (1979) Plant regeneration from callus of red and crimson clover. Plant Sci Lett 15:231–237

    Article  Google Scholar 

  32. Bevan M (1984) Agrobacterium vectors for plant transformation. Nucleic Acids Res 12:8711–8721

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Hajdukiewicz Z, Svab P, Maliga P (1994) The small, versatile pPZP family of Agrobacterium binary vectors for plant transformation. Plant Mol Biol 25:989–994

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to German Spangenberg .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Rahimi-Ashtiani, S., Sahab, S., Panter, S., Mason, J., Spangenberg, G. (2015). Clovers (Trifolium spp.). In: Wang, K. (eds) Agrobacterium Protocols. Methods in Molecular Biology, vol 1223. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1695-5_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1695-5_18

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-1694-8

  • Online ISBN: 978-1-4939-1695-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics