Skip to main content

Wheat (Triticum aestivum L.) Transformation Using Immature Embryos

  • Protocol
  • First Online:
Agrobacterium Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1223))

Abstract

Wheat may now be transformed very efficiently by Agrobacterium tumefaciens. Under the protocol hereby described, immature embryos of healthy plants of wheat cultivar Fielder grown in a well-conditioned greenhouse were pretreated with centrifuging and cocultivated with A. tumefaciens. Transgenic wheat plants were obtained routinely from between 40 and 90 % of the immature embryos, thus infected in our tests. All regenerants were normal in morphology and fully fertile. About half of the transformed plants carried single copy of the transgene, which are inherited by the progeny in a Mendelian fashion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Vasil V, Castillo AM, Fromm ME, Vasil IK (1992) Herbicide resistant fertile transgenic wheat plants obtained by microprojectile bombardment of regenerable embryogenic callus. Bio Technol 10:667–674

    Article  CAS  Google Scholar 

  2. Hiei Y, Ohta S, Komari T, Kumashiro T (1994) Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. Plant J 6:271–282

    Article  CAS  PubMed  Google Scholar 

  3. Ishida Y, Saito H, Ohta S, Hiei Y, Komari T, Kumashiro T (1996) High efficiency transformation of maize (Zea mays L.) mediated by Agrobacterium tumefaciens. Nat Biotechnol 14:745–750

    Article  CAS  PubMed  Google Scholar 

  4. Cheng M, Fry EF, Pang S, Zhou H, Hironaka CM, Duncan DR, Conner TW, Wan Y (1997) Genetic transformation of wheat mediated by Agrobacterium tumefaciens. Plant Physiol 115:971–980

    PubMed Central  CAS  PubMed  Google Scholar 

  5. Przetakiewicz A, Karaś A, Orczyk W, Nadolska-Orczyk A (2004) Cell Mol Biol Lett 9:903–917

    CAS  PubMed  Google Scholar 

  6. Hiei Y, Ishida Y, Kasaoka K, Komari T (2006) Improved frequency of transformation in rice and maize by treatment of immature embryos with centrifugation and heat prior to infection with Agrobacterium tumefaciens. Plant Cell Tiss Organ Cult 87:233–243

    Article  Google Scholar 

  7. Ishida Y, Saito H, Hiei Y, Komari T (2003) Improved protocol for transformation of maize (Zea mays L.) mediated by Agrobacterium tumefaciens. Plant Biotechnol 20:57–66

    Article  CAS  Google Scholar 

  8. Frame BR, McMurray JM, Fonger TM, Main ML, Taylor KW, Torney FJ, Paz MM, Wang K (2006) Improved Agrobacterium-mediated transformation of three maize inbred lines using MS salts. Plant Cell Rep 25:1024–1034

    Article  CAS  PubMed  Google Scholar 

  9. Bartlett JG, Alves SC, Smedley M, Snape JW, Harwood WA (2008) High-throughput Agrobacterium-mediated barley transformation. Plant Methods 4:22

    Article  PubMed Central  PubMed  Google Scholar 

  10. Weir B, Gu X, Wang M, Upadhyaya N, Elliott AR, Brettell RIS (2001) Agrobacterium tumefaciens-mediated transformation of wheat using suspension cultured cells as a model system and green fluorescent protein as a visual marker. Aust J Plant Physiol 28:807–818

    CAS  Google Scholar 

  11. Wu H, Sparks C, Amoah B, Jones HD (2003) Factors influencing successful Agrobacterium-mediated genetic transformation of wheat. Plant Cell Rep 21:659–668

    CAS  PubMed  Google Scholar 

  12. Cheng M, Hu T, Layton J, Liu C-N, Fry JE (2003) Desiccation of plant tissue post-Agrobacterium infection enhances T-DNA delivery and increases stable transformation efficiency in wheat. In Vitro Cell Dev Biol Plant 39:595–604

    Article  CAS  Google Scholar 

  13. Wan Y, Layton J (2006) Wheat (Triticum aestivum L.). In: Wang K (ed) Methods in molecular biology, vol 343, Agrobacterium protocols, vol 1. Humana Press Inc., Totowa, NJ, pp 245–253

    Google Scholar 

  14. Wu H, Doherty A, Jones HD (2008) Efficient and rapid Agrobacterium-mediated genetic transformation of durum wheat (Triticum turgidum L. var. durum) using additional virulence genes. Transgenic Res 17:425–436

    Article  CAS  PubMed  Google Scholar 

  15. Risacher T, Craze M, Bowden S, Paul W, Barsby T (2009) In: Jones HD, Shewry PR (eds) Highly efficient Agrobacterium-mediated transformation of wheat via In planta inoculation. Methods in molecular biology, transgenic wheat, barley and oats, vol 478. Humana Press Inc., Totowa, NJ, pp 115–124

    Google Scholar 

  16. Jones HD, Doherty A, Wu H (2005) Review of methodologies and a protocol for the Agrobacterium-mediated transformation of wheat. Plant Methods 1:5

    Article  PubMed Central  PubMed  Google Scholar 

  17. He Y, Jones HD, Chen S, Chen XM, Wang DW, Li KX, Wang DS, Xia LQ (2010) Agrobacterium-mediated transformation of durum wheat (Triticum turgidum L. var. durum cv Stewart) with improved efficiency. J Exp Bot 61:1567–1581

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Bińka A, Orczyk W, Nadolska-Orczyk A (2012) The Agrobacterium-mediated transformation of common wheat (Triticum aestivum L.) and triticle (x Triticosecale Wittmack): role of the binary vector system and selection cassettes. J Appl Genet 53:1–8

    Article  PubMed Central  PubMed  Google Scholar 

  19. Hood EE, Helmer GL, Fraley RT, Chilton M-D (1986) The hypervirulence of Agrobacterium tumefaciens A281 is encoded in a region of pTiBo542 outside of T-DNA. J Bacteriol 168:1291–1301

    PubMed Central  CAS  PubMed  Google Scholar 

  20. Hood EE, Gelvin SB, Melchers LS, Hoekema A (1993) New Agrobacterium helper plasmids for gene transfer to plants. Transgenic Res 2:208–218

    Article  CAS  Google Scholar 

  21. Ohta S, Mita S, Hattori T, Nakamura K (1990) Construction and expression in tobacco of a β-glucuronidase (GUS) reporter gene containing an intron within the coding sequence. Plant Cell Physiol 31:805–813

    CAS  Google Scholar 

  22. Linsmaier EM, Skoog F (1965) Organic growth factor requirements of tobacco tissue culture. Physiol Plant 18:100–127

    Article  CAS  Google Scholar 

  23. Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assay with tobacco tissue cultures. Physiol Plant 15: 473–497

    Article  CAS  Google Scholar 

  24. Tingay S, McElroy D, Kalla R, Fieg S, Wang M, Thornton S, Brettell R (1997) Agrobacterium-mediated barley transformation. Plant J 11:1369–1376

    Article  CAS  Google Scholar 

  25. Jefferson RA (1987) Assaying chimeric genes in plants: the GUS gene fusion system. Plant Mol Biol Rep 5:387–405

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Elizabeth E. Hood for the gift of EHA101, Dr. Stanton B. Gelvin for the gift of EHA105, Dr. Kenzo Nakamura for the gift of pIG121Hm, and Ms. Eriko Usami for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuji Ishida .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Ishida, Y., Tsunashima, M., Hiei, Y., Komari, T. (2015). Wheat (Triticum aestivum L.) Transformation Using Immature Embryos. In: Wang, K. (eds) Agrobacterium Protocols. Methods in Molecular Biology, vol 1223. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1695-5_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1695-5_15

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-1694-8

  • Online ISBN: 978-1-4939-1695-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics