Skip to main content

Imaging and Quantification of Amyloid Fibrillation in the Cell Nucleus

  • Protocol
  • First Online:
The Nucleus

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1228))

Abstract

Xenobiotics, as well as intrinsic processes such as cellular aging, contribute to an environment that constantly challenges nuclear organization and function. While it becomes increasingly clear that proteasome-dependent proteolysis is a major player, the topology and molecular mechanisms of nuclear protein homeostasis remain largely unknown. We have shown previously that (1) proteasome-dependent protein degradation is organized in focal microenvironments throughout the nucleoplasm and (2) heavy metals as well as nanoparticles induce nuclear protein fibrillation with amyloid characteristics. Here, we describe methods to characterize the landscape of intranuclear amyloid on the global and local level in different systems such as cultures of mammalian cells and the soil nematode Caenorhabditis elegans. Application of discrete mathematics to imaging data is introduced as a tool to develop pattern recognition of intracellular protein fibrillation. Since stepwise fibrillation of otherwise soluble proteins to insoluble amyloid-like protein aggregates is a hallmark of neurodegenerative protein-misfolding disorders including Alzheimer’s disease, CAG repeat diseases, and the prion encephalopathies, investigation of intracellular amyloid may likewise aid to a better understanding of the pathomechanisms involved. We consider aggregate profiling as an important experimental approach to determine if nuclear amyloid has toxic or protective roles in various disease processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. O'Nuallain B, Wetzel R (2002) Conformational Abs recognizing a generic amyloid fibril epitope. Proc Natl Acad Sci U S A 99:1485–1490

    Article  PubMed  PubMed Central  Google Scholar 

  2. Uversky V, Lyubchenko Y (2014) Bionanoimaging: protein misfolding and aggregation. Elsevier, San Diego

    Google Scholar 

  3. Ross CA, Poirier MA (2005) Opinion: what is the role of protein aggregation in neurodegeneration? Nat Rev Mol Cell Biol 6:891–898

    Article  PubMed  CAS  Google Scholar 

  4. Chiti F, Dobson CM (2009) Amyloid formation by globular proteins under native conditions. Nat Chem Biol 5:15–22

    Article  PubMed  CAS  Google Scholar 

  5. Volpatti LR, Vendruscolo M, Dobson CM et al (2013) A clear view of polymorphism, twist, and chirality in amyloid fibril formation. ACS Nano 7:10443–10448

    Article  PubMed  CAS  Google Scholar 

  6. David DC, Ollikainen N, Trinidad JC et al (2010) Widespread protein aggregation as an inherent part of aging in C. elegans. PLoS Biol 8:e1000450

    Article  PubMed  PubMed Central  Google Scholar 

  7. Blancas-Mejía LM, Ramirez-Alvarado M (2013) Systemic amyloidoses. Annu Rev Biochem 82:745–774

    Article  PubMed  PubMed Central  Google Scholar 

  8. Nelson DL, Orr HT, Warren ST (2013) The unstable repeats-three evolving faces of neurological disease. Neuron 77:825–843

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  9. Chen M, Singer L, Scharf A et al (2008) Nuclear polyglutamine-containing protein aggregates as active proteolytic centers. J Cell Biol 180:697–704

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  10. Saudou F, Finkbeiner S, Devys D et al (1998) Huntingtin acts in the nucleus to induce apoptosis but death does not correlate with the formation of intranuclear inclusions. Cell 95:55–66

    Article  PubMed  CAS  Google Scholar 

  11. Gutekunst CA, Li SH, Yi H et al (1999) Nuclear and neuropil aggregates in Huntington's disease: relationship to neuropathology. J Neurosci 19:2522–2534

    PubMed  CAS  Google Scholar 

  12. Arrasate M, Mitra S, Schweitzer ES et al (2004) Inclusion body formation reduces levels of mutant huntingtin and the risk of neuronal death. Nature 431:805–810

    Article  PubMed  CAS  Google Scholar 

  13. Tsvetkov AS, Ando DM, Finkbeiner S (2013) Longitudinal imaging and analysis of neurons expressing polyglutamine-expanded proteins. Methods Mol Biol 1017:1–20

    Article  PubMed  CAS  Google Scholar 

  14. Arnhold F, von Mikecz A (2011) Quantitative feature extraction reveals the status quo of protein fibrillation in the cell nucleus. Integr Biol 3:761–769

    Article  CAS  Google Scholar 

  15. Arnhold F, von Mikecz A (2014) Intranuclear amyloid - local and quantitative analysis of protein fibrillation in the cell nucleus. In: Uversky V, Lyubchenko Y (eds) Bionanoimaging: protein misfolding and aggregation. Elsevier, San Diego, pp 475–484

    Google Scholar 

  16. LeVine H III (1993) Thioflavine T interaction with synthetic Alzheimer’s disease β-amyloid peptides: detection of amyloid aggregation in solution. Protein Sci 2:404–410

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  17. Stiernagel T (1999) Maintenance of C. elegans. In: Hope IA (ed) C. elegans. A practical approach. Oxford University Press, Oxford, NY, pp 51–67

    Google Scholar 

  18. Wanker EE, Scherzinger E, Heiser V et al (1999) Membrane filter assay for detection of amyloid-like polyglutamine-containing protein aggregates. Methods Enzymol 309:375–386

    Article  PubMed  CAS  Google Scholar 

  19. Brenner S (1974) The genetics of Caenorhabditis elegans. Genetics 77:71–94

    PubMed  CAS  PubMed Central  Google Scholar 

  20. Scharf A, Piechulek A, von Mikecz A (2013) The effect of nanoparticles on the biochemical and behavioral aging phenotype of the nematode Caenorhabditis elegans. ACS Nano 7:10695–10703

    Article  PubMed  CAS  Google Scholar 

  21. Honda Y, Tanaka M, Honda S (2010) Trehalose extends longevity in the nematode Caenorhabditis elegans. Aging Cell 9:558–569

    Article  PubMed  CAS  Google Scholar 

  22. Altun ZF, Hall DH (2009) Introduction. In: WormAtlas doi:10.3908/wormatlas.1.1

    Google Scholar 

  23. von Mikecz A, Scharf A (2013) Isochronal visualization of transcription and proteasomal proteolysis in cell culture or in the model organism Caenorhabditis elegans. Methods Mol Biol 1042:257–273

    Article  Google Scholar 

  24. Kovalevich J, Langford D (2013) Considerations for the use of SH-SY5Y neuroblastoma cells in neurobiology. Methods Mol Biol 1078:9–21

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna von Mikecz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Arnhold, F., Scharf, A., von Mikecz, A. (2015). Imaging and Quantification of Amyloid Fibrillation in the Cell Nucleus. In: Hancock, R. (eds) The Nucleus. Methods in Molecular Biology, vol 1228. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1680-1_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1680-1_15

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1679-5

  • Online ISBN: 978-1-4939-1680-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics