Skip to main content

Sugarcane (Saccharum Spp. Hybrids)

  • Protocol
  • First Online:
Agrobacterium Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1224))

Abstract

Genetic transformation of sugarcane has a tremendous potential to complement traditional breeding in crop improvement and will likely transform sugarcane into a bio-factory for value-added products. We describe here Agrobacterium tumefaciens-mediated transformation of sugarcane. Embryogenic callus induced from immature leaf whorls was used as target for transformation with the hypervirulent Agrobacterium strain AGL1 carrying a constitutive nptII expression cassette in vector pPZP200. Selection with 30 mg/L geneticin during the callus phase and 30 mg/L paromomycin during regeneration of shoots and roots effectively suppressed the development of non-transgenic plants. This protocol was successful with a commercially important sugarcane cultivar, CP-88-1762, at a transformation efficiency of two independent transgenic plants per g of callus.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Irvine JE (1999) Saccharum species as horticultural classes. Theor Appl Genet 98:186–194

    Article  Google Scholar 

  2. Crago CL, Khanna M, Barton J, Giuliani E, Amaral W (2010) Competitiveness of Brazilian sugarcane ethanol compared to US corn ethanol. Energy Policy 38:7404–7415

    Article  Google Scholar 

  3. Bower R, Birch RG (1992) Transgenic sugarcane plants via microprojectile bombardment. Plant J 2:409–416

    Article  CAS  Google Scholar 

  4. Arencibia AD, Carmona ER, Tellez P, Chan MT, Yu SM, Trujillo LE, Oramas P (1998) An efficient protocol for sugarcane (Saccharum spp. L.) transformation mediated by Agrobacterium tumefaciens. Transgenic Res 7:1–10

    Article  Google Scholar 

  5. Dai S, Zheng P, Marmey P, Zhang S, Tian W, Chen S, Beachy RN, Fauquet C (2001) Comparative analysis of transgenic rice plants obtained by Agrobacterium-mediated transformation and particle bombardment. Mol Breed 7:25–33

    Article  CAS  Google Scholar 

  6. Travella S, Ross SM, Harden J, Everett C, Snape JW, Harwood WA (2005) A comparison of transgenic barley lines produced by particle bombardment and Agrobacterium-mediated techniques. Plant Cell Rep 23:780–789

    Article  CAS  PubMed  Google Scholar 

  7. Taparia Y, Fouad WM, Gallo M, Altpeter F (2012) Rapid production of transgenic sugarcane with the introduction of simple loci following biolistic transfer of a minimal expression cassette and direct embryogenesis. In Vitro Cell Dev Biol Plant 48:15–22

    Article  CAS  Google Scholar 

  8. Taparia Y, Gallo M, Altpeter F (2012) Comparison of direct and indirect embryogenesis protocols, biolistic gene transfer and selection parameters for rapid genetic transformation of sugarcane. J Plant Biotechnol 111:131–141

    CAS  Google Scholar 

  9. Jackson MA, Anderson DJ, Birch RG (2013) Comparison of Agrobacterium and particle bombardment using whole plasmid or minimal cassette for production of high-expressing, low-copy transgenic plants. Transgenic Res 22:143–151

    Article  CAS  PubMed  Google Scholar 

  10. Altpeter F, Oraby H (2010) Sugarcane. In: Kempken F, Jung C (eds) Biotechnology in agriculture and forestry: genetic modification of plants, vol 64. Springer, Heidelberg, pp 453–467

    Chapter  Google Scholar 

  11. Harrison MD, Geijskes J, Coleman HD, Shand K, Kinkema M, Palupe A, Hassall R, Sainz M, Lloyd R, Miles S, Dale JL (2011) Accumulation of recombinant cellobiohydrolase and endoglucanase in the leaves of mature transgenic sugar cane. Plant Biotechnol J 9:884–896

    Article  CAS  PubMed  Google Scholar 

  12. Jung JH, Fouad WM, Vermerris W, Gallo M, Altpeter F (2012) RNAi suppression of lignin biosynthesis in sugarcane reduces recalcitrance for biofuel production from lignocellulosic biomass. Plant Biotech J 10:1067–1076

    Article  CAS  Google Scholar 

  13. Jung JH, Vermerris W, Gallo M, Fedenko J, Erickson J, Altpeter F (2013) RNAi suppression of lignin biosynthesis increases fermentable sugar yields for biofuel production from field-grown sugarcane. Plant Biotechnol J 11:709–716

    Article  CAS  PubMed  Google Scholar 

  14. Mudge SR, Basnayake SW, Moyle RL, Osabe K, Graham MW, Morgan TE, Birch RG (2013) Mature-stem expression of a silencing-resistant sucrose isomerase gene drives isomaltulose accumulation to high levels in sugarcane. Plant Biotechnol J 11:502–509

    Article  CAS  PubMed  Google Scholar 

  15. Chengalrayan K, Gallo-Meagher M (2001) Effect of various growth regulators on shoot regeneration of sugarcane. In Vitro Cell Dev Biol Plant 37:434–439

    Article  CAS  Google Scholar 

  16. Lazo GR, Stein PA, Ludwig RA (1991) A DNA transformation-competent Arabidopsis genomic library in Agrobacterium. Biotechnology 9:963–967

    Article  CAS  PubMed  Google Scholar 

  17. Jones HD, Doherty A, Wu H (2005) Review of methodologies and a protocol for the Agrobacterium-mediated transformation of wheat. Plant Methods 1:5–14

    Article  PubMed Central  PubMed  Google Scholar 

  18. Sarwar M, Akhtar M (1990) Cloning of aminoglycoside phosphotransferase (APH) gene from antibiotic-producing strain of Bacillus circulans into a high-expression vector, p KK223-3. Biochem J 268:671–677

    CAS  PubMed Central  PubMed  Google Scholar 

  19. Bevan M (1984) A new Agrobacterium vector for plant transformation. Heredity 53:577–578

    Google Scholar 

  20. Hajdukiewicz P, Svab Z, Maliga P (1994) The small, versatile pPZP family of Agrobacterium binary vectors for plant transformation. Plant Mol Biol 25:989–994

    Article  CAS  PubMed  Google Scholar 

  21. Christensen AH, Quail PH (1996) Ubiquitin promoter-based vectors for high-level expression of selectable and/or screenable marker genes in monocotyledonous plants. Transgenic Res 5:213–218

    Article  CAS  PubMed  Google Scholar 

  22. Heinz DJ, Krishnamurthy M, Nickell LG, Maretski A (1977) Cell, tissue and organ culture in sugarcane improvement. In: Reinert J, Bajaj YPS (eds) Applied fundamental aspects of plant cell, tissue and organ culture. Springer, Berlin, pp 3–17

    Google Scholar 

  23. Gelvin SB (2006) Agrobacterium virulence gene induction. In: Wang K (ed) Methods in molecular biology, vol 343. Humana, Tatowa, NJ, pp 77–84

    Google Scholar 

  24. McCormac AC, Elliott MC, Chen DF (1998) A simple method for the production of highly competent cells of Agrobacterium for transformation via electroporation. Mol Biotechnol 9:155–159

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fredy Altpeter .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Wu, H., Altpeter, F. (2015). Sugarcane (Saccharum Spp. Hybrids). In: Wang, K. (eds) Agrobacterium Protocols. Methods in Molecular Biology, vol 1224. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1658-0_24

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1658-0_24

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-1657-3

  • Online ISBN: 978-1-4939-1658-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics