Skip to main content

Quantification of Plant Cell Coupling with Live-Cell Microscopy

  • Protocol
  • First Online:
Plasmodesmata

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1217))

Abstract

Movement of nutrients and signaling compounds from cell to cell is an essential process for plant growth and development. To understand processes such as carbon allocation, cell communication, and reaction to pathogen attack it is important to know a specific molecule’s capacity to pass a specific cell wall interface. Transport through plasmodesmata, the cell wall channels that directly connect plant cells, is regulated not only by a fixed size exclusion limit, but also by physiological and pathological adaptation. The noninvasive approach described here offers the possibility of precisely determining the plasmodesmata-mediated cell wall permeability for small molecules in living cells.

The method is based on photoactivation of the fluorescent tracer caged fluorescein. Non-fluorescent caged fluorescein is applied to a target tissue, where it is taken up passively into all cells. Imaged by confocal microscopy, loaded tracer is activated by UV illumination in a target cell and its spread to neighboring cells monitored. When combined with high-speed acquisition by resonant scanning or spinning disc confocal microscopy, the high signal-to-noise ratio of photoactivation allows collection of three-dimensional (3D) time series. These contain all necessary functional and anatomical data to measure cell coupling in complex tissues noninvasively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Roberts AG, Oparka KJ (2003) Plasmodesmata and the control of symplastic transport. Plant Cell Environ 26:103–124

    Article  Google Scholar 

  2. Kim I, Kobayashi K, Cho E, Zambryski PC (2005) Subdomains for transport via plasmodesmata corresponding to the apical-basal axis are established during Arabidopsis embryogenesis. Proc Natl Acad Sci U S A 102: 11945–11950

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  3. Liesche J, Schulz A (2012) In vivo quantification of cell coupling in plants with different phloem-loading strategies. Plant Physiol 159: 355–365

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  4. Liesche J, Schulz A (2013) Modeling the parameters for plasmodesmal sugar filtering in active symplasmic phloem loaders. Front Plant Sci 4:207

    Article  PubMed  PubMed Central  Google Scholar 

  5. Patrick JW (2013) Does Don Fisher’s high-pressure manifold model account for phloem transport and resource partitioning? Front Plant Sci 4:184

    Article  PubMed  PubMed Central  Google Scholar 

  6. Bret-Harte MS, Silk WK (1994) Nonvascular, symplasmic diffusion of sucrose cannot satisfy the carbon demands of growth in the primary root tip of Zea mays L. Plant Physiol 105: 19–33

    PubMed  CAS  PubMed Central  Google Scholar 

  7. Rutschow HL, Baskin TI, Kramer EM (2011) Regulation of solute flux through plasmodesmata in the root meristem. Plant Physiol 155: 1817–1826

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  8. Schulz A (1995) Plasmodesmal widening accompanies the short-term increase in symplasmic phloem unloading in pea root-tips under osmotic-stress. Protoplasma 188:22–37

    Article  Google Scholar 

  9. Terry BR, Robards AW (1987) Hydrodynamic radius alone governs the mobility of molecules through plasmodesmata. Planta 171:145–157

    Article  PubMed  CAS  Google Scholar 

  10. Goodwin PB, Shepherd V, Erwee MG (1990) Compartmentation of fluorescent tracers injected into the epidermal-cells of Egeria densa leaves. Planta 181:129–136

    Article  PubMed  CAS  Google Scholar 

  11. Martens HJ, Hansen M, Schulz A (2004) Caged probes: a novel tool in studying symplasmic transport in plant tissues. Protoplasma 223:63–66

    Article  PubMed  CAS  Google Scholar 

  12. Kim JY, Yuan Z, Cilia M, Khalfan-Jagani Z, Jackson D (2002) Intercellular trafficking of a KNOTTED1 green fluorescent protein fusion in the leaf and shoot meristem of Arabidopsis. Proc Natl Acad Sci U S A 99:4103–4108

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  13. Kurata T, Ishida T, Kawabata-Awai C, Noguchi M, Hattori S, Sano R et al (2005) Cell-to-cell movement of the CAPRICE protein in Arabidopsis root epidermal cell differentiation. Development 132:5387–5398

    Article  PubMed  CAS  Google Scholar 

  14. Itaya A, Ma F, Qi Y, Matsuda Y, Zhu Y, Liang G et al (2002) Plasmodesma-mediated selective protein traffic between “symplasmically isolated” cells probed by a viral movement protein. Plant Cell 14:2071–2083

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  15. Ding B, Turgeon R, Parthasarathy MV (1992) Substructure of freeze-substituted plasmodesmata. Protoplasma 169:28–41

    Article  Google Scholar 

  16. Brecknock S, Dibbayawan TP, Vesk M, Vesk PA, Faulkner C, Barton DA, Overall RL (2011) High resolution scanning electron microscopy of plasmodesmata. Planta 234:749–758

    Article  PubMed  CAS  Google Scholar 

  17. Tucker EB, Spanswick RM (1985) Translocation in the staminal hairs of Setcreasea purpurea. kinetics of intercellular transport. Protoplasma 128:167–172

    Article  Google Scholar 

  18. Oparka KJ, Duckett CM, Prior DM, Fisher DB (1994) Real-time imaging of phloem unloading in the root-tip of Arabidopsis. Plant J 6: 759–766

    Article  Google Scholar 

  19. Turgeon R, Wolf S (2009) Phloem transport: cellular pathways and molecular trafficking. Annu Rev Plant Biol 60:207–221

    Article  PubMed  CAS  Google Scholar 

  20. Liesche J, Schulz A (2012) Quantification of plant cell coupling with three-dimensional photoactivation microscopy. J Microsc 247:2–9

    Article  PubMed  CAS  Google Scholar 

  21. Lee HM, Larson DR, Lawrence DS (2009) Illuminating the chemistry of life: design, synthesis, and applications of “caged” and related photoresponsive compounds. ACS Chem Biol 4:409–427

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  22. Sowinski at conference “PD 2010”, Sydney, Australia

    Google Scholar 

  23. Gjetting KS, Ytting CK, Schulz A, Fuglsang AT (2012) Live imaging of intra- and extracellular pH in plants using pHusion, a novel genetically encoded biosensor. J Exp Bot 63:3207–3218

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  24. Froelich DR, Mullendore DL, Jensen KH, Ross-Elliott TJ, Anstead JA, Thompson GA et al (2011) Phloem ultrastructure and pressure flow: sieve-element-occlusion-related agglomerations do not affect translocation. Plant Cell 23:4428–4445

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  25. Grossmann G, Guo WJ, Ehrhardt DW, Frommer WB, Sit RV, Quake SR et al (2011) The RootChip: an integrated microfluidic chip for plant science. Plant Cell 23:4234–4240

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  26. Schulz A (1994) Phloem transport and differential unloading in pea-seedlings after source and sink manipulations. Planta 192:239–248

    Article  CAS  Google Scholar 

  27. Liarzi O, Epel BL (2005) Development of a quantitative tool for measuring changes in the coefficient of conductivity of plasmodesmata induced by developmental, biotic, and abiotic signals. Protoplasma 225:67–76

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johannes Liesche .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Liesche, J., Schulz, A. (2015). Quantification of Plant Cell Coupling with Live-Cell Microscopy. In: Heinlein, M. (eds) Plasmodesmata. Methods in Molecular Biology, vol 1217. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1523-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1523-1_9

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1522-4

  • Online ISBN: 978-1-4939-1523-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics