Skip to main content

Computational Design of Metalloproteins

  • Protocol
  • First Online:
Protein Design

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1216))

Abstract

A number of design strategies exist for the development of novel metalloproteins. These strategies often exploit the inherent symmetry of metal coordination and local topology. Computational design of metal binding sites in flexible regions of proteins is challenging as the number of conformational degrees of freedom is significantly increased. Additionally, without pre-organization of the primary shell ligands by the protein fold, metal binding sites can rearrange according to the coordination constraints of the metal center. Examples of metal incorporation into existing folds, full fold design exploiting symmetry, and fold design in asymmetric scaffolds are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gibney BR, Huang SS, Skalicky JJ, Fuentes EJ, Wand AJ, Dutton PL (2001) Hydrophobic modulation of heme properties in heme protein maquettes. Biochemistry 40:10550–10561

    Article  PubMed  CAS  Google Scholar 

  2. DeGrado WF, Summa CM, Pavone V, Nastri F, Lombardi A (1999) De novo design and structural characterization of proteins and metalloproteins. Annu Rev Biochem 68:779–819

    Article  PubMed  CAS  Google Scholar 

  3. Hellinga HW, Richards FM (1991) Construction of new ligand binding sites in proteins of known structure. I. Computer-aided modeling of sites with pre-defined geometry. J Mol Biol 222:763–785

    Article  PubMed  CAS  Google Scholar 

  4. Hellinga HW (1996) Metalloprotein design. Curr Opin Biotechnol 7:437–441

    Article  PubMed  CAS  Google Scholar 

  5. Hellinga HW, Caradonna JP, Richards FM (1991) Construction of new ligand binding sites in proteins of known structure. Ii Grafting of a buried transition metal binding site into escherichia coli thioredoxin. J Mol Biol 222:787–803

    Article  PubMed  CAS  Google Scholar 

  6. Katti SK, LeMaster DM, Eklund H (1990) Crystal structure of thioredoxin from escherichia coli at 1.68 a resolution. J Mol Biol 212:167–184

    Article  PubMed  CAS  Google Scholar 

  7. Summa CM (2002) Computational methods and their applications for de novo functional protein design and membrane protein solubilization. In: School of Medicine Ph. D. University of Pennsylvania, Philadelphia, PA

    Google Scholar 

  8. Pinto AL, Hellinga HW, Caradonna JP (1997) Construction of a catalytically active iron superoxide dismutase by rational protein design. Proc Natl Acad Sci U S A 94: 5562–5567

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  9. Coldren CD, Hellinga HW, Caradonna JP (1997) The rational design and construction of a cuboidal iron-sulfur protein. Proc Natl Acad Sci U S A 94:6635–6640

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  10. Clarke ND, Yuan SM (1995) Metal search: a computer program that helps design tetrahedral metal-binding sites. Proteins 23:256–263

    Article  PubMed  CAS  Google Scholar 

  11. Desjarlais JR, Clarke ND (1998) Computer search algorithms in protein modification and design. Curr Opin Struct Biol 8:471–475

    Article  PubMed  CAS  Google Scholar 

  12. Klemba M, Gardner KH, Marino S, Clarke ND, Regan L (1995) Novel metal-binding proteins by design. Nat Struct Biol 2:368–373

    Article  PubMed  CAS  Google Scholar 

  13. Gronenborn AM, Filpula DR, Essig NZ, Achari A, Whitlow M, Wingfield PT et al (1991) A novel, highly stable fold of the immunoglobulin binding domain of streptococcal protein g. Science 253:657–661

    Article  PubMed  CAS  Google Scholar 

  14. Klemba M, Regan L (1995) Characterization of metal binding by a designed protein: single ligand substitutions at a tetrahedral cys2his2 site. Biochemistry 34:10094–10100

    Article  PubMed  CAS  Google Scholar 

  15. Regan L (1995) Protein design: novel metal-binding sites. Trends Biochem Sci 20: 280–285

    Article  PubMed  CAS  Google Scholar 

  16. Regan L, Clarke ND (1990) A tetrahedral zinc(ii)-binding site introduced into a designed protein. Biochemistry 29:10878–10883

    Article  PubMed  CAS  Google Scholar 

  17. Zanghellini A, Jiang L, Wollacott AM, Cheng G, Meiler J, Althoff EA et al (2006) New algorithms and an in silico benchmark for computational enzyme design. Protein Sci 15: 2785–2794

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  18. Der BS, Machius M, Miley MJ, Mills JL, Szyperski T, Kuhlman B (2012) Metal-mediated affinity and orientation specificity in a computationally designed protein homodimer. J Am Chem Soc 134:375–385

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  19. Salgado EN, Ambroggio XI, Brodin JD, Lewis RA, Kuhlman B, Tezcan FA (2010) Metal templated design of protein interfaces. Proc Natl Acad Sci U S A 107:1827–1832

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  20. Salgado EN, Radford RJ, Tezcan FA (2010) Metal-directed protein self-assembly. Acc Chem Res 43:661–672

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  21. Brodin JD, Ambroggio XI, Tang C, Parent KN, Baker TS, Tezcan FA (2012) Metal-directed, chemically tunable assembly of one-, two- and three-dimensional crystalline protein arrays. Nat Chem 4:375–382

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  22. Betz SF, DeGrado WF (1996) Controlling topology and native-like behavior of de novo-designed peptides: design and characterization of antiparallel four-stranded coiled coils. Biochemistry 35:6955–6962

    Article  PubMed  CAS  Google Scholar 

  23. Plecs JJ, Harbury PB, Kim PS, Alber T (2004) Structural test of the parameterized-backbone method for protein design. J Mol Biol 342:289–297

    Article  PubMed  CAS  Google Scholar 

  24. Harbury PB, Plecs JJ, Tidor B, Alber T, Kim PS (1998) High-resolution protein design with backbone freedom. Science 282:1462–1467

    Article  PubMed  CAS  Google Scholar 

  25. King NP, Sheffler W, Sawaya MR, Vollmar BS, Sumida JP, Andre I et al (2012) Computational design of self-assembling protein nanomaterials with atomic level accuracy. Science 336:1171–1174

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  26. Sippl MJ, Wiederstein M (2012) Detection of spatial correlations in protein structures and molecular complexes. Structure 20:718–728

    Article  PubMed  CAS  Google Scholar 

  27. Thompson KE, Wang Y, Madej T, Bryant SH (2009) Improving protein structure similarity searches using domain boundaries based on conserved sequence information. BMC Struct Biol 9:33

    Article  PubMed  PubMed Central  Google Scholar 

  28. Lombardi A, Summa CM, Geremia S, Randaccio L, Pavone V, DeGrado WF (2000) Retrostructural analysis of metalloproteins: application to the design of a minimal model for diiron proteins. Proc Natl Acad Sci U S A 97:6298–6305

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  29. Summa CM, Lombardi A, Lewis M, DeGrado WF (1999) Tertiary templates for the design of diiron proteins. Curr Opin Struct Biol 9:500–508

    Article  PubMed  CAS  Google Scholar 

  30. Chowdry AB, Reynolds KA, Hanes MS, Voorhies M, Pokala N, Handel TM (2007) An object-oriented library for computational protein design. J Comput Chem 28:2378–2388

    Article  PubMed  CAS  Google Scholar 

  31. Pokala N, Handel TM (2005) Energy functions for protein design: adjustment with protein-protein complex affinities, models for the unfolded state, and negative design of solubility and specificity. J Mol Biol 347:203–227

    Article  PubMed  CAS  Google Scholar 

  32. Kono H, Saven JG (2001) Statistical theory for protein combinatorial libraries. Packing interactions, backbone flexibility, and the sequence variability of a main-chain structure. J Mol Biol 306:607–628

    Article  PubMed  CAS  Google Scholar 

  33. Kuhlman B, Dantas G, Ireton GC, Varani G, Stoddard BL, Baker D (2003) Design of a novel globular protein fold with atomic-level accuracy. Science 302:1364–1368

    Article  PubMed  CAS  Google Scholar 

  34. Nanda V, Rosenblatt MM, Osyczka A, Kono H, Getahun Z, Dutton PL et al (2005) De novo design of a redox-active minimal rubredoxin mimic. J Am Chem Soc 127:5804–5805

    Article  PubMed  CAS  Google Scholar 

  35. Cochran FV, Wu SP, Wang W, Nanda V, Saven JG, Therien MJ et al (2005) Computational de novo design and characterization of a four-helix bundle protein that selectively binds a nonbiological cofactor. J Am Chem Soc 127:1346–1347

    Article  PubMed  CAS  Google Scholar 

  36. Ghirlanda G, Osyczka A, Liu W, Antolovich M, Smith KM, Dutton PL et al (2004) De novo design of a d2-symmetrical protein that reproduces the diheme four-helix bundle in cytochrome bc1. J Am Chem Soc 126:8141–8147

    Article  PubMed  CAS  Google Scholar 

  37. North B, Summa CM, Ghirlanda G, DeGrado WF (2001) D(n)-symmetrical tertiary templates for the design of tubular proteins. J Mol Biol 311:1081–1090

    Article  PubMed  CAS  Google Scholar 

  38. Grzyb J, Xu F, Weiner L, Reijerse EJ, Lubitz W, Nanda V et al (2010) De novo design of a non-natural fold for an iron-sulfur protein: alpha-helical coiled-coil with a four-iron four-sulfur cluster binding site in its central core. Biochim Biophys Acta 1797:406–413

    Article  PubMed  CAS  Google Scholar 

  39. Grzyb J, Xu F, Nanda V, Luczkowska R, Reijerse E, Lubitz W et al (2012) Empirical and computational design of iron-sulfur cluster proteins. Biochim Biophys Acta 1817:1256–1262

    Article  PubMed  CAS  Google Scholar 

  40. McAllister KA, Zou H, Cochran FV, Bender GM, Senes A, Fry HC et al (2008) Using alpha-helical coiled-coils to design nanostructured metalloporphyrin arrays. J Am Chem Soc 130:11921–11927

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  41. Maglio O, Nastri F, Pavone V, Lombardi A, DeGrado WF (2003) Preorganization of molecular binding sites in designed diiron proteins. Proc Natl Acad Sci U S A 100:3772–3777

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  42. DeGrado WF, Di Costanzo L, Geremia S, Lombardi A, Pavone V, Randaccio L (2003) Sliding helix and change of coordination geometry in a model di-mnii protein. Angew Chem Int Ed Engl 42:417–420

    Article  PubMed  CAS  Google Scholar 

  43. Reig AJ, Pires MM, Snyder RA, Wu Y, Jo H, Kulp DW et al (2012) Alteration of the oxygen-dependent reactivity of de novo due ferri proteins. Nat Chem 4:900–906

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  44. Kaplan J, DeGrado WF (2004) De novo design of catalytic proteins. Proc Natl Acad Sci U S A 101:11566–11570

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  45. Zastrow ML, Pecoraro VL (2013) Influence of active site location on catalytic activity in de novo-designed zinc metalloenzymes. J Am Chem Soc 135:5895–5903

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  46. Zastrow ML, Peacock AF, Stuckey JA, Pecoraro VL (2012) Hydrolytic catalysis and structural stabilization in a designed metalloprotein. Nat Chem 4:118–123

    Article  CAS  Google Scholar 

  47. Stillman MJ (1995) Metallothioneins. Coord Chem Rev 144:461–511

    Article  CAS  Google Scholar 

  48. Kagi JHR (1991) Overview of metallothionein. Meth Enzymol 205:613–626

    Article  PubMed  CAS  Google Scholar 

  49. Messerle BA, Schaffer A, Vasak M, Kagi JH, Wuthrich K (1990) Three-dimensional structure of human [113cd7]metallothionein-2 in solution determined by nuclear magnetic resonance spectroscopy. J Mol Biol 214:765–779

    Article  PubMed  CAS  Google Scholar 

  50. Kim JD, Rodriguez-Granillo A, Case DA, Nanda V, Falkowski PG (2012) Energetic selection of topology in ferredoxins. PLoS Comput Biol 8:e1002463

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  51. Case DA, Cheatham TE 3rd, Darden T, Gohlke H, Luo R, Merz KM Jr et al (2005) The amber biomolecular simulation programs. J Comput Chem 26:1668–1688

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  52. Simons KT, Kooperberg C, Huang E, Baker D (1997) Assembly of protein tertiary structures from fragments with similar local sequences using simulated annealing and Bayesian scoring functions. J Mol Biol 268:209–225

    Article  PubMed  CAS  Google Scholar 

  53. Roy L, Case MA (2010) Protein core packing by dynamic combinatorial chemistry. J Am Chem Soc 132:8894–8896

    Article  PubMed  CAS  Google Scholar 

  54. Case MA, McLendon GL (2004) Metal-assembled modular proteins: toward functional protein design. Acc Chem Res 37:754–762

    Article  PubMed  CAS  Google Scholar 

  55. Cooper HJ, Case MA, McLendon GL, Marshall AG (2003) Electrospray ionization fourier transform ion cyclotron resonance mass spectrometric analysis of metal-ion selected dynamic protein libraries. J Am Chem Soc 125:5331–5339

    Article  PubMed  CAS  Google Scholar 

  56. Lebruin LT, Banerjee S, O’Rourke BD, Case MA (2011) Metal ion-assembled micro-collagen heterotrimers. Biopolymers 95: 792–800

    PubMed  CAS  PubMed Central  Google Scholar 

  57. Berisio R, Vitagliano L, Mazzarella L, Zagari A (2002) Crystal structure of the collagen triple helix model [(pro-pro-gly)(10)](3). Protein Sci 11:262–270

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  58. Kirkpatrick S, Gelatt CD Jr, Vecchi MP (1983) Optimization by simulated annealing. Science 220:671–680

    Article  PubMed  CAS  Google Scholar 

  59. Srinivasan R, Rose GD (1995) Linus: a hierarchic procedure to predict the fold of a protein. Proteins 22:81–99

    Article  PubMed  CAS  Google Scholar 

  60. Xu F, Zahid S, Silva T, Nanda V (2011) Computational design of a collagen a:B:C-type heterotrimer. J Am Chem Soc 133: 15260–15263

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  61. Parmar AS, Zahid S, Belure S, Young R, Hasan N, Nanda V (2014) Design of net-charged abc-type collagen heterotrimers. J Struct Biol 185:163–167

    Article  PubMed  CAS  Google Scholar 

  62. Wray JW, Baase WA, Ostheimer GJ, Zhang XJ, Matthews BW (2000) Use of a non-rigid region in t4 lysozyme to design an adaptable metal-binding site. Protein Eng 13:313–321

    Article  PubMed  CAS  Google Scholar 

  63. Zhang XJ, Matthews BW (1995) Edpdb—a multifunctional tool for protein-structure analysis. J Appl Crystallogr 28:624–630

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by NIH R01 GM-089949.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vikas Nanda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Parmar, A.S., Pike, D., Nanda, V. (2014). Computational Design of Metalloproteins. In: Köhler, V. (eds) Protein Design. Methods in Molecular Biology, vol 1216. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1486-9_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1486-9_12

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1485-2

  • Online ISBN: 978-1-4939-1486-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics