Skip to main content

New Analytical Strategies Applied to the Determination of Coenzyme Q10 in Biological Matrix

  • Protocol
  • First Online:
Advanced Protocols in Oxidative Stress III

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1208))

Abstract

In the last few years the importance of Coenzyme Q10 (CoQ10) determination has gained clinical relevance. CoQ10 is a redox-active, lipophilic substance integrated in the mitochondrial respiratory chain which acts as an electron carrier for the production of cellular energy. In addition, it is recognized as a primary regenerating antioxidant playing an intrinsic role against oxidative damage. There are some reports of low CoQ10 levels in a number of disorders, such as cancer, muscular, neurodegenerative, cardiological, and reproductive diseases. Therefore, it is a priority to develop analytical methodologies for evaluating CoQ10 in matrices of greater importance for the correct diagnosis of diseases, simple enough to be used in routine clinical laboratories.

In this chapter two recently developed techniques, capillary electrophoresis and microHPLC, for the analysis of CoQ10 in biological matrices, are studied.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Barshop B, Gangoiti J (2007) Analysis of coenzyme Q10 in human blood and tissues. Mitochondrion 7:89–93

    Article  Google Scholar 

  2. Jiang P, Wu M, Zheng Y et al (2004) Analysis of coenzyme Q(10) in human plasma by column-switching liquid chromatography. J Chromatogr B Analyt Technol Biomed Life Sci 805(2): 297–301

    Article  PubMed  CAS  Google Scholar 

  3. Armstrong JS, Whiteman M, Rose P et al (2003) The Coenzyme Q10 analog decylubiquinone inhibits the redox-activated mitochondrial permeability transition: role of mitochondrial [correction mitochondrial] complex III. J Biol Chem 278(4):49079–49084

    Article  PubMed  CAS  Google Scholar 

  4. Miles MV, Tang PH, Liles L et al (2008) Validation and application of an HPLC-EC method for analysis of coenzyme Q10 in blood platelets. Biomed Chromatogr 22: 1403–1408

    Article  PubMed  CAS  Google Scholar 

  5. Quinzii C, Naini A, Salviati L et al (2006) A mutation in para-hydroxybenzoate-polyprenyltransferase (COQ2) causes primary coenzyme Q10 deficiency. Am J Hum Genet 78:345–349

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  6. Rötig A, Mollet J, Rio M et al (2007) Infantile and pediatric quinone deficiency diseases. Mitochondrion 7 Suppl:S112–S121

    Google Scholar 

  7. CooperJ M, Korlipara LV, Hart PE et al (2008) Coenzyme Q10 and vitamin E deficiency in Friedreich’s ataxia: predictor of efficacy of vitamin E and coenzyme Q10 therapy. Eur J Neurol 15(12):1371–1379

    Article  Google Scholar 

  8. Molineux S, Young J, Florkowshi C et al (2008) Coenzyme Q10: is there a clinical role and a case for measurement? Clin Biochem Rev 29(2):71–78

    Google Scholar 

  9. Cobanoglu U, Demir H, Cebi A et al (2011) Lipid peroxidation, DNA damage and coenzyme Q10 in lung cancer patients—markers for risk assessment? Asian Pac J Cancer Prev 12(6):1399–1403

    PubMed  Google Scholar 

  10. Cooney RV, Dai Q, Gao YT et al (2011) Low plasma coenzyme Q(10) levels and breast cancer risk in Chinese women. Cancer Epidemiol Biomarkers Prev 20(6):1124–1130

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  11. El-ghoroury EA, Raslan HM, Badawy EA et al (2009) Malondialdehyde and coenzyme Q10 in platelets and serum in type 2 diabetes mellitus: correlation with glycemic control. Blood Coagul Fibrinolysis 20(4):248–251

    Article  PubMed  CAS  Google Scholar 

  12. Littarru GP, Tiano L (2010) Clinical aspects of coenzyme Q10: an update. Nutrition 26: 250–254

    Article  PubMed  CAS  Google Scholar 

  13. Contin M, Lucangioli S, Martinefski M et al (2011) Miniaturized HPLC-UV method for analysis of coenzyme Q10 in human plasma. J Liq Chrom Relat Tech 34:2485–2494

    Article  CAS  Google Scholar 

  14. Tang PH, Miles MV, DeGrauw A et al (2001) HPLC analysis of reduced and oxidized coenzyme Q(10) in human plasma. Clin Chem 47(2):256–265

    PubMed  CAS  Google Scholar 

  15. Grossi G, Bargossi AM, Fiorella PL et al (1992) Improved high-performance liquid chromatographic method for the determination of coenzyme Q10 in plasma. J Chromatogr 593: 217–226

    Article  PubMed  CAS  Google Scholar 

  16. Okamoto T, Fukunaga Y, Ida Y et al (1988) Determination of reduced and total ubiquinones in biological materials by liquid chromatography with electrochemical detection. J Chromatogr 430:11–19

    Article  PubMed  CAS  Google Scholar 

  17. Mosca F, Fattorini D, Bompadre S et al (2002) Assay of coenzyme Q(10) in plasma by a single dilution step. Anal Biochem 305:49–54

    Article  PubMed  CAS  Google Scholar 

  18. Karpińska J, Mikołuć B, Motkowski R et al (2006) HPLC method for simultaneous determination of retinol, alpha-tocopherol and coenzyme Q10 in human plasma. J Pharm Biomed Anal 42:232–236

    Article  PubMed  Google Scholar 

  19. Breihaupt D, Kraut S (2006) Simultaneous determination of the vitamins A, E, their esters and coenzyme Q10 in multivitamin dietary supplements using an RP-C30 phase. Eur Food Res Technol 222:643–649

    Article  Google Scholar 

  20. Andersson S (1992) Determination of coenzyme Q by non-aqueous reversed-phase liquid chromatography. J Chromatogr 606:272–276

    Article  PubMed  CAS  Google Scholar 

  21. Edlund PO (1988) Determination of coenzyme Q10, alpha-tocopherol and cholesterol in biological samples by coupled-column liquid chromatography with coulometric and ultraviolet detection. J Chromatogr 425(1):87–97

    Article  PubMed  CAS  Google Scholar 

  22. Wang Q, Lee B, Ong C (1999) Automated high-performance liquid chromatographic method with precolumn reduction for the determination of ubiquinol and ubiquinone in human plasma. J Chromatogr B Biomed Sci Appl 726:297–302

    Article  PubMed  CAS  Google Scholar 

  23. Tang P, Miles M, Miles L et al (2004) Measurement of reduced and oxidized coenzyme Q9 and coenzyme Q10 levels in mouse tissues by HPLC with coulometric detection. Clin Chim Acta 341:173–184

    Article  PubMed  CAS  Google Scholar 

  24. Hansen G, Christensen P, Tüchsen E et al (2004) Sensitive and selective analysis of coenzyme Q10 in human serum by negative APCI LC-MS. Analyst 129:45–50

    Article  PubMed  CAS  Google Scholar 

  25. Michalkiewicz S (2008) Voltammetric determination of coenzyme Q10 in pharmaceutical dosage forms. Bioelectrochemistry 73:30–36

    Article  PubMed  CAS  Google Scholar 

  26. Battino M, Ferri E, Girotti S et al (1991) Free radical scavenging activity of coenzyme 0 measured by a chemiluminescent assay. Anal Chim Acta 255:367–371

    Article  CAS  Google Scholar 

  27. Rokos JA (1973) Determination of ubiquinone in subnanomole quantities by spectrofluorometry of its product with alkaline ethylcyanoacetate. Anal Biochem 56:26–33

    Article  PubMed  CAS  Google Scholar 

  28. Karpińska J, Mikołuć B, Piotrowska-Jastrzebska J (1998) Application of derivative spectrophotometry for determination of coenzyme Q10 in pharmaceuticals and plasma. J Pharm Biomed Anal 17:1345–1350

    Article  PubMed  Google Scholar 

  29. Lucangioli S, Tripodi V (2012) Applications of capillary electrophoresis to the clinical and pharmaceutical analysis. In: He Z (ed) Capillary electrophoresis: fundamentals, techniques and applications, Chap 9. Nova Science, New Orleans, LA, pp 187–209

    Google Scholar 

  30. Trotta M, Gallarate M, Pattarino F et al (1999) Investigation of the phase behaviour of systems containing lecithin and 2-acyl lysolecithin derivatives. Int J Pharm 190:83–89

    Article  PubMed  CAS  Google Scholar 

  31. Marsh A, Clark B, Broderick M et al (2004) Recent advances in microemulsion electrokinetic chromatography. Electrophoresis 25: 3970–3980

    Article  PubMed  CAS  Google Scholar 

  32. Broderick M, Donegan S, Power J et al (2005) Optimisation and use of water-in-oil MEEKC in pharmaceutical analysis. J Pharm Biomed Anal 37:877–884

    Article  PubMed  CAS  Google Scholar 

  33. Huie CW (2006) Recent applications of microemulsion electrokinetic chromatography. Electrophoresis 27:60–75

    Article  PubMed  CAS  Google Scholar 

  34. Lin JM, Nakagawa M, Uchiyama K et al (2002) Comparison of three different anionic surfactants for the separation of hydrophobic compounds by nonaqueous capillary electrophoresis. Electrophoresis 23:421–425

    Article  PubMed  CAS  Google Scholar 

  35. Tripodi V, Flor S, Carlucci A et al (2006) Simultaneous determination of natural and synthetic estrogens by EKC using a novel microemulsion. Electrophoresis 27:4431–4438

    Article  PubMed  CAS  Google Scholar 

  36. Lucangioli S, Flor S, Contin M et al (2009) A capillary electrophoretic system based on a novel microemulsion for the analysis of coenzyme Q10 in human plasma by electrokinetic chromatography. Electrophoresis 30: 1899–1905

    Article  PubMed  CAS  Google Scholar 

  37. Contin M, Martinefski M, Lucangioli S et al (2011) Sistema cromatográfico miniaturizado para la determinación de coenzima Q10 en plasma, músculo y plaquetas. Acta Bioquim Clín Latinoam 45(2):273–278

    CAS  Google Scholar 

  38. Ascenio RM, Hernandez BJ, Rocco A et al (2009) Food analysis: a continuous challenge for miniaturized separation techniques. J Sep Sci 32(21):3764–3800

    Article  Google Scholar 

  39. Niklowitz P, Menke T, Andler W et al (2004) Simultaneous analysis of coenzyme Q10 in plasma, erythrocytes and platelets: comparison of the antioxidant level in blood cells and their environment in healthy children and after oral supplementation in adults. Clin Chim Acta 342:219–226

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valeria Tripodi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Contin, M., Flor, S., Martinefski, M., Lucangioli, S., Tripodi, V. (2015). New Analytical Strategies Applied to the Determination of Coenzyme Q10 in Biological Matrix. In: Armstrong, D. (eds) Advanced Protocols in Oxidative Stress III. Methods in Molecular Biology, vol 1208. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1441-8_29

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1441-8_29

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1440-1

  • Online ISBN: 978-1-4939-1441-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics