Skip to main content

Fractionation of Non-polyadenylated and Ribosomal-Free RNAs from Mammalian Cells

  • Protocol
  • First Online:
Regulatory Non-Coding RNAs

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1206))

Abstract

Most of mRNAs and well-characterized long noncoding RNAs are shaped with 5′ cap and 3′ poly(A) tail. Thereby, conventional transcriptome analysis typically involved the enrichment of poly(A)+ RNAs by oligo(dT) selection. However, accumulated lines of evidence suggest that there are many RNA transcripts processed in alternative ways, which largely failed to be detected by oligo(dT) purification. Here, we describe an enrichment strategy to purify non-polyadenylated (poly(A)−/ribo−) RNAs from total RNAs by removal of poly(A)+ RNA transcripts and ribosomal RNAs. In the combination with high-throughput sequencing methods, this strategy has been successfully applied to identify the rich repertoire of non-polyadenylated RNAs in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Moore MJ, Proudfoot NJ (2009) Pre-mRNA processing reaches back to transcription and ahead to translation. Cell 136:688–700

    Article  PubMed  CAS  Google Scholar 

  2. Manley JL, Proudfoot NJ, Platt T (1989) RNA 3′-end formation. Genes Dev 3:2218–2244

    Article  PubMed  CAS  Google Scholar 

  3. Pan Q et al (2008) Deep surveying of alternative splicing complexity in the human transcriptome by high-throughput sequencing. Nat Genet 40:1413–1415

    Article  PubMed  CAS  Google Scholar 

  4. Wang ET et al (2008) Alternative isoform regulation in human tissue transcriptomes. Nature 456:470–476

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  5. Li JB et al (2009) Genome-wide identification of human RNA editing sites by parallel DNA capturing and sequencing. Science 324: 1210–1213

    Article  PubMed  CAS  Google Scholar 

  6. Wilhelm BT et al (2008) Dynamic repertoire of a eukaryotic transcriptome surveyed at single-nucleotide resolution. Nature 453: 1239–1243

    Article  PubMed  CAS  Google Scholar 

  7. Marzluff WF, Wagner EJ, Duronio RJ (2008) Metabolism and regulation of canonical histone mRNAs: life without a poly(A) tail. Nat Rev Genet 9:843–854

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  8. Gu H, Das Gupta J, Schoenberg DR (1999) The poly(A)-limiting element is a conserved cis-acting sequence that regulates poly(A) tail length on nuclear pre-mRNAs. Proc Natl Acad Sci U S A 96:8943–8948

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  9. Meijer HA et al (2007) A novel method for poly(A) fractionation reveals a large population of mRNAs with a short poly(A) tail in mammalian cells. Nucleic Acids Res 35:e132

    Article  PubMed  PubMed Central  Google Scholar 

  10. Cheng J et al (2005) Transcriptional maps of 10 human chromosomes at 5-nucleotide resolution. Science 308:1149–5114

    Article  PubMed  CAS  Google Scholar 

  11. Wu Q et al (2008) Poly A- transcripts expressed in HeLa cells. PLoS One 3:e2803

    Article  PubMed  PubMed Central  Google Scholar 

  12. Cui P et al (2010) A comparison between ribo-minus RNA-sequencing and polyA-selected RNA-sequencing. Genomics 96:259–265

    Article  PubMed  CAS  Google Scholar 

  13. Wilusz JE, Freier SM, Spector DL (2008) 3′ end processing of a long nuclear-retained noncoding RNA yields a tRNA-like cytoplasmic RNA. Cell 135:919–932

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  14. Kim TK et al (2010) Widespread transcription at neuronal activity-regulated enhancers. Nature 465:182–187

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  15. De Santa F et al (2010) A large fraction of extragenic RNA pol II transcription sites overlap enhancers. PLoS Biol 8:e1000384

    Article  PubMed  PubMed Central  Google Scholar 

  16. Yin QF et al (2012) Long noncoding RNAs with snoRNA ends. Mol Cell 48:219–230

    Article  PubMed  CAS  Google Scholar 

  17. Jeck WR et al (2013) Circular RNAs are abundant, conserved, and associated with ALU repeats. RNA 19:141–157

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  18. Memczak S et al (2013) Circular RNAs are a large class of animal RNAs with regulatory potency. Nature 495:333–338

    Article  PubMed  CAS  Google Scholar 

  19. Hansen TB et al (2013) Natural RNA circles function as efficient microRNA sponges. Nature 495:384–388

    Article  PubMed  CAS  Google Scholar 

  20. Zhang Y et al (2013) Circular intronic long noncoding RNAs. Mol Cell 51:792–806

    Article  PubMed  CAS  Google Scholar 

  21. Sunwoo H et al (2009) MEN epsilon/beta nuclear-retained non-coding RNAs are up-regulated upon muscle differentiation and are essential components of paraspeckles. Genome Res 19:347–359

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  22. Wilusz JE et al (2012) A triple helix stabilizes the 3′ ends of long noncoding RNAs that lack poly(A) tails. Genes Dev 26:2392–2407

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  23. Brown JA et al (2012) Formation of triple-helical structures by the 3′-end sequences of MALAT1 and MENbeta noncoding RNAs. Proc Natl Acad Sci U S A 109:19202–19207

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  24. Yap KL et al (2010) Molecular interplay of the noncoding RNA ANRIL and methylated histone H3 lysine 27 by polycomb CBX7 in transcriptional silencing of INK4a. Mol Cell 38:662–674

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  25. Gardner EJ et al (2012) Stable intronic sequence RNA (sisRNA), a new class of noncoding RNA from the oocyte nucleus of Xenopus tropicalis. Genes Dev 26: 2550–2559

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  26. Yang L et al (2011) Genomewide characterization of non-polyadenylated RNAs. Genome Biol 12:R16

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  27. Derrien T et al (2012) The GENCODE v7 catalog of human long noncoding RNAs: analysis of their gene structure, evolution, and expression. Genome Res 22:1775–1789

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  28. Langmead B et al (2009) Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 10:R25

    Article  PubMed  PubMed Central  Google Scholar 

  29. Trapnell C, Pachter L, Salzberg SL (2009) TopHat: discovering splice junctions with RNA-Seq. Bioinformatics 25:1105–1111

    Article  PubMed  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are grateful to H.-H. Fang and other lab members for helpful discussion to improve this protocol. This work was supported by grants XDA01010206 and 2012OHTP08 from CAS, and 31271376 and 31271390 from NSFC to LLC and LY.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ling-Ling Chen Ph.D. or Li Yang Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Yin, QF., Chen, LL., Yang, L. (2015). Fractionation of Non-polyadenylated and Ribosomal-Free RNAs from Mammalian Cells. In: Carmichael, G. (eds) Regulatory Non-Coding RNAs. Methods in Molecular Biology, vol 1206. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1369-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1369-5_6

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1368-8

  • Online ISBN: 978-1-4939-1369-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics