Skip to main content

Lectin Structures: Classification Based on the 3-D Structures

  • Protocol
  • First Online:
Lectins

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1200))

Abstract

Recent progress in structural biology has elucidated the three-dimensional structures and carbohydrate-binding mechanisms of most lectin families. Lectins are classified into 48 families based on their three-dimensional structures. A ribbon drawing gallery of the crystal and solution structures of representative lectins or lectin-like proteins is appended and may help to convey the diversity of lectin families, the similarity and differences between lectin families, as well as the carbohydrate-binding architectures of lectins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Finn RD, Mistry J, Tate J et al (2010) The Pfam protein families database. Nucleic Acids Res 38:D211–D222

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  2. Hunter S, Jones P, Mitchell A et al (2012) InterPro in 2011: new developments in the family and domain prediction database. Nucleic Acids Res 40:D306–D312

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  3. Lee JK, Baum LG, Moremen K, Pierce M (2004) The X-lectins: a new family with homology to the Xenopus laevis oocyte lectin XL-35. Glycoconj J 21:443–450

    Article  PubMed  CAS  Google Scholar 

  4. Koharudin LM, Gronenborn AM (2011) Structural basis of the anti-HIV activity of the cyanobacterial Oscillatoria Agardhii agglutinin. Structure 19:1170–1181

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  5. Koharudin LM, Kollipara S, Aiken C, Gronenborn AM (2012) Structural insights into the anti-HIV activity of the Oscillatoria agardhii agglutinin homolog lectin family. J Biol Chem 287:33796–33811

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  6. Moustafa I, Connaris H, Taylor M et al (2004) Sialic acid recognition by Vibrio cholerae neuraminidase. J Biol Chem 279:40819–40826

    Article  PubMed  CAS  Google Scholar 

  7. Lee JO, Rieu P, Arnaout MA, Liddington R (1995) Crystal structure of the A domain from the α subunit of integrin CR3 (CD11b/CD18). Cell 80:631–638

    Article  PubMed  CAS  Google Scholar 

  8. Paaventhan P, Joseph JS, Seow SV et al (2003) A 1.7A structure of Fve, a member of the new fungal immunomodulatory protein family. J Mol Biol 332:461–470

    Article  PubMed  CAS  Google Scholar 

  9. Kocourek J, Horejsi V (1983) Note on the recent discussion on definition of the term "lectin". In: Bog-Hansen TC, Spengler GA (eds) Lectins: Biology, Biochemistry and Clinical Biochemistry, vol 3. Walter de Gruyter, Berlin and New York, pp 3–6

    Google Scholar 

  10. Cantarel BL, Coutinho PM, Rancurel C et al (2009) The Carbohydrate-Active EnZymes database (CAZy): an expert resource for Glycogenomics. Nucleic Acids Res 37:D233–238

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  11. Fujimoto Z, Kuno A, Kaneko S et al (2000) Crystal structure of Streptomyces olivaceoviridis E-86 β-xylanase containing xylan-binding domain. J Mol Biol 300:575–585

    Article  PubMed  CAS  Google Scholar 

  12. Vallee F, Lipari F, Yip P et al (2000) Crystal structure of a class I α1,2-mannosidase involved in N-glycan processing and endoplasmic reticulum quality control. EMBO J 19:581–588

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  13. Bianchet MA, Odom EW, Vasta GR, Amzel LM (2002) A novel fucose recognition fold involved in innate immunity. Nat Struct Biol 9:628–634

    PubMed  CAS  Google Scholar 

  14. Odom EW, Vasta GR (2006) Characterization of a binary tandem domain F-type lectin from striped bass (Morone saxatilis). J Biol Chem 281:1698–1713

    Article  PubMed  CAS  Google Scholar 

  15. Beisel HG, Kawabata S, Iwanaga S, Huber R, Bode W (1999) Tachylectin-2: crystal structure of a specific GlcNAc/GalNAc-binding lectin involved in the innate immunity host defense of the Japanese horseshoe crab Tachypleus tridentatus. EMBO J 18:2313–2322

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  16. Sanchez JF, Lescar J, Chazalet V et al (2006) Biochemical and structural analysis of Helix pomatia agglutinin. A hexameric lectin with a novel fold J Biol Chem 281:20171–20180

    CAS  Google Scholar 

  17. Fujimoto Z, Jackson A, Michikawa M et al (2013) The structure of a Streptomyces avermitilis α-l-rhamnosidase reveals a novel carbohydrate-binding module CBM67 within the six-domain arrangement. J Biol Chem 288:12376–12385

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  18. Sulák O, Cioci G, Delia M et al (2010) A TNF-like trimeric lectin domain from Burkholderia cenocepacia with specificity for fucosylated human histo-blood group antigens. Structure 18:59–72

    Article  PubMed  Google Scholar 

  19. Bourne Y, Rouge P, Cambillau C (1990) X-ray structure of a (α-Man(1-3)β-Man(1-4)GlcNAc)-lectin complex at 2.1-Å resolution. The role of water in sugar-lectin interaction. J Biol Chem 265:18161–18165

    PubMed  CAS  Google Scholar 

  20. Liao D-I, Kapadia G, Ahmed H, Vasta GR, Herzberg O (1994) Structure of S-lectin, a developmentally regulated vertebrate β-galactoside-binding protein. Proc Natl Acad Sci U S A 91:1428–1432

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  21. Thompson D, Pepys MB, Tickle I, Wood S (2002) The structures of crystalline complexes of human serum amyloid P component with its carbohydrate ligand, the cyclic pyruvate acetal of galactose. J Mol Biol 320:1081–1086

    Article  PubMed  CAS  Google Scholar 

  22. May AP, Robinson RC, Vinson M, Crocker PR, Jones EY (1998) Crystal structure of the N-terminal domain of sialoadhesin in complex with 3′ sialyllactose at 1.85 Å resolution. Mol Cell 1:719–728

    Article  PubMed  CAS  Google Scholar 

  23. Weis WI, Drickamer K, Hendrickson WA (1992) Structure of a C-type mannose-binding protein complexed with an oligosaccharide. Nature 360:127–134

    Article  PubMed  CAS  Google Scholar 

  24. Banerji S, Wright AJ, Noble M et al (2007) Structures of the Cd44-hyaluronan complex provide insight into a fundamental carbohydrate-protein interaction. Nat Struct Mol Biol 14:234–239

    Article  PubMed  CAS  Google Scholar 

  25. Sun YJ, Chang NC, Hung SI et al (2001) The crystal structure of a novel mammalian lectin, Ym1, suggests a saccharide binding site. J Biol Chem 276:17507–17514

    Article  PubMed  CAS  Google Scholar 

  26. Karaveg K, Siriwardena A, Tempel W et al (2005) Mechanism of class 1 (glycosylhydrolase family 47) α-mannosidases involved in N-glycan processing and endoplasmic reticulum quality control. J Biol Chem 280:16197–16207

    Article  PubMed  CAS  Google Scholar 

  27. Rutenber E, Ready M, Robertus JD (1987) Structure and evolution of ricin B chain. Nature 326:624–626

    Article  PubMed  CAS  Google Scholar 

  28. Transue TR, Smith AK, Mo H, Goldstein IJ, Saper MA (1997) Structure of benzyl T-antigen disaccharide bound to Amaranthus caudatus agglutinin. Nat Struct Biol 4:779–783

    Article  PubMed  CAS  Google Scholar 

  29. Strotmeier J, Gu S, Jutzi S et al (2011) The biological activity of botulinum neurotoxin type C is dependent upon novel types of ganglioside binding sites. Mol Microbiol 81:143–156

    Article  PubMed  CAS  Google Scholar 

  30. Mizushima T, Hirao T, Yoshida Y et al (2004) Structural basis of sugar-recognizing ubiquitin ligase. Nat Struct Mol Biol 11:365–370

    Article  PubMed  CAS  Google Scholar 

  31. Cioci G, Mitchell EP, Gautier C et al (2003) Structural basis of calcium and galactose recognition by the lectin PA-IL of Pseudomonas aeruginosa. FEBS Lett 555:297–301

    Article  PubMed  CAS  Google Scholar 

  32. Roberts DL, Weix DJ, Dahms NM, Kim JJ (1998) Molecular basis of lysosomal enzyme recognition: three-dimensional structure of the cation-dependent mannose 6-phosphate receptor. Cell 93:639–648

    Article  PubMed  CAS  Google Scholar 

  33. Garlatti V, Belloy N, Martin L et al (2007) Structural insights into the innate immune recognition specificities of L- and H-ficolins. EMBO J 26:623–633

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  34. Schallus T, Feher K, Sternberg U, Rybin V, Muhle-Goll C (2010) Analysis of the specific interactions between the lectin domain of malectin and diglucosides. Glycobiology 20:1010–1020

    Article  PubMed  CAS  Google Scholar 

  35. Kozlov G, Pocanschi CL, Rosenauer A et al (2010) Structural basis of carbohydrate recognition by calreticulin. J Biol Chem 285:38612–38620

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  36. Suetake T, Tsuda S, Kawabata S et al (2000) Chitin-binding proteins in invertebrates and plants comprise a common chitin-binding structural motif. J Biol Chem 275:17929–17932

    Article  PubMed  CAS  Google Scholar 

  37. Harata K, Muraki M (2000) Crystal structures of Urtica dioica agglutinin and its complex with tri-N-acetylchitotriose. J Mol Biol 297:673–681

    Article  PubMed  CAS  Google Scholar 

  38. Jeyaprakash AA, Srivastav A, Surolia A, Vijayan M (2004) Structural basis for the carbohydrate specificities of artocarpin: variation in the length of a loop as a strategy for generating ligand specificity. J Mol Biol 338:757–770

    Article  PubMed  CAS  Google Scholar 

  39. Shirai T, Watanabe Y, Lee MS, Ogawa T, Muramoto K (2009) Structure of rhamnose-binding lectin CSL3: unique pseudo-tetrameric architecture of a pattern recognition protein. J Mol Biol 391:390–403

    Article  PubMed  CAS  Google Scholar 

  40. Lü S, Liang S, Gu X (1999) Three-dimensional structure of Selenocosmia huwena lectin-I (SHL-I) from the venom of the spider Selenocosmia huwena by 2D-NMR. J Protein Chem 18:609–617

    Article  PubMed  Google Scholar 

  41. Marchant J, Cowper B, Liu Y et al (2012) Galactose recognition by the apicomplexan parasite Toxoplasma gondii. J Biol Chem 287:16720–16733

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  42. Garnett JA, Liu Y, Leon E et al (2009) Detailed insights from microarray and crystallographic studies into carbohydrate recognition by microneme protein 1 (MIC1) of Toxoplasma gondii. Protein Sci 18:1935–1947

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  43. Sánchez-Vallet A, Saleem-Batcha R, Kombrink A et al (2013) Fungal effector Ecp6 outcompetes host immune receptor for chitin binding through intrachain LysM dimerization. Elife 2:e00790

    Article  PubMed  PubMed Central  Google Scholar 

  44. Zebisch M, Strater N (2008) Structural insight into signal conversion and inactivation by NTPDase2 in purinergic signaling. Proc Natl Acad Sci U S A 105:6882–6887

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  45. Hester G, Kaku H, Goldstein IJ, Wright CS (1995) Structure of mannose-specific snowdrop (Galanthus nivalis) lectin is representative of a new plant lectin family. Nat Struct Biol 2:472–479

    Article  PubMed  CAS  Google Scholar 

  46. Carrizo ME, Capaldi S, Perduca M et al (2005) The antineoplastic lectin of the common edible mushroom (Agaricus bisporus) has two binding sites, each specific for a different configuration at a single epimeric hydroxyl. J Biol Chem 280:10614–10623

    Article  PubMed  CAS  Google Scholar 

  47. Botos I, O’Keefe BR, Shenoy SR et al (2002) Structures of the complexes of a potent anti-HIV protein cyanovirin-N and high mannose oligosaccharides. J Biol Chem 277:34336–34342

    Article  PubMed  CAS  Google Scholar 

  48. Cioci G, Mitchell EP, Chazalet V et al (2006) β-Propeller crystal structure of Psathyrella velutina lectin: an integrin-like fungal protein interacting with monosaccharides and calcium. J Mol Biol 357:1575–1591

    Article  PubMed  CAS  Google Scholar 

  49. Wimmerova M, Mitchell E, Sanchez JF, Gautier C, Imberty A (2003) Crystal structure of fungal lectin: six-bladed β-propeller fold and novel fucose recognition mode for Aleuria aurantia lectin. J Biol Chem 278:27059–27067

    Article  PubMed  CAS  Google Scholar 

  50. Veelders M, Bruckner S, Ott D et al (2010) Structural basis of flocculin-mediated social behavior in yeast. Proc Natl Acad Sci U S A 107:22511–22516

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  51. Swaminathan S, Furey W, Pletcher J, Sax M (1995) Residues defining V beta specificity in staphylococcal enterotoxins. Nat Struct Biol 2:680–686

    Article  PubMed  CAS  Google Scholar 

  52. Ling H, Boodhoo A, Hazes B et al (1998) Structure of the Shiga-like toxin I B-pentamer complexed with an analogue of its receptor Gb3. Biochemistry 37:1777–1788

    Article  PubMed  CAS  Google Scholar 

  53. Mitchell E, Houles C, Sudakevitz D et al (2002) Structural basis for oligosaccharide-mediated adhesion of Pseudomonas aeruginosa in the lungs of cystic fibrosis patients. Nat Struct Biol 9:918–921

    Article  PubMed  CAS  Google Scholar 

  54. Williams DC Jr, Lee JY, Cai M, Bewley CA, Clore GM (2005) Crystal structures of the HIV-1 inhibitory cyanobacterial protein MVL free and bound to Man3GlcNAc2: structural basis for specificity and high-affinity binding to the core pentasaccharide from N-linked oligomannoside. J Biol Chem 280:29269–29276

    Article  PubMed  CAS  Google Scholar 

  55. Dodson KW, Pinkner JS, Rose T et al (2001) Structural basis of the interaction of the pyelonephritic E. coli adhesin to its human kidney receptor. Cell 105:733–743

    Article  PubMed  CAS  Google Scholar 

  56. Wellens A, Garofalo C, Nguyen H et al (2008) Intervening with urinary tract infections using anti-adhesives based on the crystal structure of the FimH-oligomannose-3 complex. PLoS One 3:e2040

    Article  PubMed  PubMed Central  Google Scholar 

  57. Buts L, Wellens A, Van Molle I et al (2005) Impact of natural variation in bacterial F17G adhesins on crystallization behaviour. Acta Crystallogr D Biol Crystallogr 61:1149–1159

    Article  PubMed  Google Scholar 

  58. Sauter NK, Hanson JE, Glick GD et al (1992) Binding of influenza virus hemagglutinin to analogs of its cell-surface receptor, sialic acid: analysis by proton nuclear magnetic resonance spectroscopy and X-ray crystallography. Biochemistry 31:9609–9621

    Article  PubMed  CAS  Google Scholar 

  59. Dormitzer PR, Sun ZY, Wagner G, Harrison SC (2002) The rhesus rotavirus VP4 sialic acid binding domain has a galectin fold with a novel carbohydrate binding site. EMBO J 21:885–897

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  60. Fry EE, Tuthill TJ, Harlos K et al (2010) Crystal structure of equine rhinitis A virus in complex with its sialic acid receptor. J Gen Virol 91:1971–1977

    Article  PubMed  CAS  Google Scholar 

  61. Burmeister WP, Guilligay D, Cusack S, Wadell G, Arnberg N (2004) Crystal structure of species D adenovirus fiber knobs and their sialic acid binding sites. J Virol 78:7727–7736

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  62. Grahn E, Askarieh G, Holmner A et al (2007) Crystal structure of the Marasmius oreades mushroom lectin in complex with a xenotransplantation epitope. J Mol Biol 369:710–721

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zui Fujimoto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Fujimoto, Z., Tateno, H., Hirabayashi, J. (2014). Lectin Structures: Classification Based on the 3-D Structures. In: Hirabayashi, J. (eds) Lectins. Methods in Molecular Biology, vol 1200. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1292-6_46

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1292-6_46

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1291-9

  • Online ISBN: 978-1-4939-1292-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics