Skip to main content

Probing the Epigenetic Status at Notch Target Genes

  • Protocol
  • First Online:
Notch Signaling

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1187))

Abstract

Chromatin-based mechanisms significantly contribute to the regulation of many developmentally regulated genes, including Notch target genes. After specific ligand binding, the intracellular part of the Notch receptor is cleaved off and translocates to the nucleus, where it binds to the transcription factor CSL (encoded by the RBPJ gene in mammals), in order to activate transcription. In the absence of a Notch signal, CSL represses Notch target genes by recruiting a co-repressor complex. Both NICD co-activator and CSL co-repressor complexes contain chromatin modifiers such as histone acetyltransferases and methyltransferases, which dynamically regulate chromatin marks at Notch target genes.

Here we provide protocols for ChIP (chromatin immunoprecipitation) to analyze the chromatin status of dynamically regulated Notch target genes. Furthermore, an example is presented how to perform a primary analysis of ChIP-Seq data at Notch target genes using the Cistrome platform.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fortini ME (2009) Notch signaling: the core pathway and its posttranslational regulation. Dev Cell 16:633–647

    Article  CAS  PubMed  Google Scholar 

  2. Kouzarides T (2007) Chromatin modifications and their function. Cell 128:693–705

    Article  CAS  PubMed  Google Scholar 

  3. Bray S, Bernard F (2010) Notch targets and their regulation. Curr Top Dev Biol 92:253–275

    Article  CAS  PubMed  Google Scholar 

  4. Borggrefe T, Oswald F (2009) The Notch signaling pathway: transcriptional regulation at Notch target genes. Cell Mol Life Sci 66:1631–1646

    Article  CAS  PubMed  Google Scholar 

  5. Schwanbeck R, Martini S, Bernoth K et al (2011) The Notch signaling pathway: molecular basis of cell context dependency. Eur J Cell Biol 90:572–581

    Article  CAS  PubMed  Google Scholar 

  6. Kovall RA (2008) More complicated than it looks: assembly of Notch pathway transcription complexes. Oncogene 27:5099–5109

    Article  CAS  PubMed  Google Scholar 

  7. Oswald F, Täuber B, Dobner T et al (2001) p300 acts as a transcriptional coactivator for mammalian Notch-1. Mol Cell Biol 21:7761–7774

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Dou S, Zeng X, Cortes P et al (1994) The recombination signal sequence-binding protein RBP-2 N functions as a transcriptional repressor. Mol Cell Biol 14:3310–3319

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Kopan R (2012) Notch signaling. Cold Spring Harb Perspect Biol 4(10)

    Google Scholar 

  10. Borggrefe T, Liefke R (2012) Fine-tuning of the intracellular canonical Notch signaling pathway. Cell Cycle 11:264–276

    Article  CAS  PubMed  Google Scholar 

  11. Kao HY, Ordentlich P, Koyano-Nakagawa N et al (1998) A histone deacetylase corepressor complex regulates the Notch signal transduction pathway. Genes Dev 12:2269–2277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Guarani V, Deflorian G, Franco CA et al (2011) Acetylation-dependent regulation of endothelial Notch signalling by the SIRT1 deacetylase. Nature 473:234–238

    Article  CAS  PubMed  Google Scholar 

  13. Mulligan P, Yang F, Di Stefano L et al (2011) A SIRT1-LSD1 corepressor complex regulates Notch target gene expression and development. Mol Cell 42:689–699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Liefke R, Oswald F, Alvarado C et al (2010) Histone demethylase KDM5A is an integral part of the core Notch-RBP-J repressor complex. Genes Dev 24:590–601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wang J, Scully K, Zhu X et al (2007) Opposing LSD1 complexes function in developmental gene activation and repression programmes. Nature 446:882–887

    Article  CAS  PubMed  Google Scholar 

  16. Martinez AM, Schuettengruber B, Sakr S et al (2009) Polyhomeotic has a tumor suppressor activity mediated by repression of Notch signaling. Nat Genet 41:1076–1082

    Article  CAS  PubMed  Google Scholar 

  17. Ntziachristos P, Tsirigos A, Van Vlierberghe P et al (2012) Genetic inactivation of the polycomb repressive complex 2 in T cell acute lymphoblastic leukemia. Nat Med 18:298–301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Qin H, Du D, Zhu Y et al (2005) The PcG protein HPC2 inhibits RBP-J-mediated transcription by interacting with LIM protein KyoT2. FEBS Lett 579:1220–1226

    Article  CAS  PubMed  Google Scholar 

  19. Liu T, Ortiz JA, Taing L et al (2011) Cistrome: an integrative platform for transcriptional regulation studies. Genome Biol 12:R83

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wang H, Zou J, Zhao B et al (2011) Genome-wide analysis reveals conserved and divergent features of Notch1/RBPJ binding in human and murine T-lymphoblastic leukemia cells. Proc Natl Acad Sci U S A 108:14908–14913

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Zhao B, Zou J, Wang H et al (2011) Epstein-Barr virus exploits intrinsic B-lymphocyte transcription programs to achieve immortal cell growth. Proc Natl Acad Sci U S A 108:14902–14907

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Castel D, Mourikis P, Bartels SJ et al (2013) Dynamic binding of RBPJ is determined by Notch signaling status. Genes Dev 27:1059–1071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Langmead B, Trapnell C, Pop M et al (2009) Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 10:R25

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank Drs. K. Hein and B.D. Giaimo for critical reading of the manuscript and testing the bioinformatics guide. This work was supported by the Heisenberg program (BO 1639/5-1) of the DFG, the Max-Planck society, and the Excellence Cluster Cardio-Pulmonary System (ECCPS) to T.B. R.L. has been supported by a DFG postdoctoral fellowship (LI 2057/1-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tilman Borggrefe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Liefke, R., Borggrefe, T. (2014). Probing the Epigenetic Status at Notch Target Genes. In: Bellen, H., Yamamoto, S. (eds) Notch Signaling. Methods in Molecular Biology, vol 1187. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1139-4_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1139-4_20

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1138-7

  • Online ISBN: 978-1-4939-1139-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics