Skip to main content

Efficient Library Preparation for Next-Generation Sequencing Analysis of Genome-Wide Epigenetic and Transcriptional Landscapes in Embryonic Stem Cells

  • Protocol
  • First Online:
Stem Cell Transcriptional Networks

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1150))

Abstract

Gene expression in embryonic stem (ES) cells is regulated in part by a network of transcription factors, epigenetic regulators, and histone modifications that influence the underlying chromatin in a way that is conducive or repressive for transcription. Advances in next-generation sequencing technology have allowed for the genome-wide analysis of chromatin constituents and protein–DNA interactions at high resolution in ES cells and other stem cells. While many studies have surveyed genome-wide profiles of a few factors and expression changes at a fixed time point in undifferentiated ES cells, few have utilized an integrative approach to simultaneously survey protein–DNA interactions, histone modifications, and expression programs during ES cell self-renewal and differentiation. To identify transcriptional networks that regulate pluripotency and differentiation, it is important to generate high-quality genome-wide maps of transcription factors, chromatin factors, and histone modifications and to survey global gene expression profiles. Here, to interrogate genome-wide profiles of chromatin features and to survey global gene expression programs in ES cells, we describe protocols for efficient library construction for next-generation sequencing of ChIP-Seq and RNA-Seq samples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chen X, Xu H, Yuan P, Fang F, Huss M, Vega VB, Wong E, Orlov YL, Zhang W, Jiang J, Loh YH, Yeo HC, Yeo ZX, Narang V, Govindarajan KR, Leong B, Shahab A, Ruan Y, Bourque G, Sung WK, Clarke ND, Wei CL, Ng HH (2008) Integration of external signaling pathways with the core transcriptional network in embryonic stem cells. Cell 133(6):1106–1117

    Article  CAS  PubMed  Google Scholar 

  2. Kim J, Chu J, Shen X, Wang J, Orkin SH (2008) An extended transcriptional network for pluripotency of embryonic stem cells. Cell 132(6):1049–1061

    Article  CAS  PubMed  Google Scholar 

  3. Ivanova N, Dobrin R, Lu R, Kotenko I, Levorse J, DeCoste C, Schafer X, Lun Y, Lemischka IR (2006) Dissecting self-renewal in stem cells with RNA interference. Nature 442(7102):533–538

    Article  CAS  PubMed  Google Scholar 

  4. Mikkelsen TS, Ku M, Jaffe DB, Issac B, Lieberman E, Giannoukos G, Alvarez P, Brockman W, Kim TK, Koche RP, Lee W, Mendenhall E, O’Donovan A, Presser A, Russ C, Xie X, Meissner A, Wernig M, Jaenisch R, Nusbaum C, Lander ES, Bernstein BE (2007) Genome-wide maps of chromatin state in pluripotent and lineage-committed cells. Nature 448(7153):553–560

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Kidder BL, Palmer S (2010) Examination of transcriptional networks reveals an important role for TCFAP2C, SMARCA4, and EOMES in trophoblast stem cell maintenance. Genome Res 20(4):458–472. doi:10.1101/gr.101469.109, gr.101469.109 [pii]

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Kidder BL, Palmer S (2012) HDAC1 regulates pluripotency and lineage specific transcriptional networks in embryonic and trophoblast stem cells. Nucleic Acids Res 40(7):2925–2939. doi:10.1093/nar/gkr1151, gkr1151 [pii]

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Kidder BL, Palmer S, Knott JG (2009) SWI/SNF-Brg1 regulates self-renewal and occupies core pluripotency-related genes in embryonic stem cells. Stem Cells 27(2):317–328. doi:10.1634/stemcells.2008-0710, stemcells.2008-0710 [pii]

    Article  CAS  PubMed  Google Scholar 

  8. Kidder BL, Yang J, Palmer S (2008) Stat3 and c-Myc genome-wide promoter occupancy in embryonic stem cells. PLoS One 3(12):e3932. doi:10.1371/journal.pone.0003932

    Article  PubMed Central  PubMed  Google Scholar 

  9. Ang YS, Tsai SY, Lee DF, Monk J, Su J, Ratnakumar K, Ding J, Ge Y, Darr H, Chang B, Wang J, Rendl M, Bernstein E, Schaniel C, Lemischka IR (2011) Wdr5 mediates self-renewal and reprogramming via the embryonic stem cell core transcriptional network. Cell 145(2):183–197. doi:10.1016/j.cell.2011.03.003, S0092-8674(11)00240-6 [pii]

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Pasini D, Cloos PA, Walfridsson J, Olsson L, Bukowski JP, Johansen JV, Bak M, Tommerup N, Rappsilber J, Helin K (2010) JARID2 regulates binding of the Polycomb repressive complex 2 to target genes in ES cells. Nature 464(7286):306–310. doi:10.1038/nature08788, nature08788 [pii]

    Article  CAS  PubMed  Google Scholar 

  11. Kidder BL, Hu G, Yu ZX, Liu C, Zhao K (2013) Extended self-renewal and accelerated reprogramming in the absence of Kdm5b. Mol Cell Biol 33:4793–4810. doi:10.1128/MCB.00692-13, MCB.00692-13 [pii]

    Article  CAS  PubMed  Google Scholar 

  12. Ying QL, Wray J, Nichols J, Batlle-Morera L, Doble B, Woodgett J, Cohen P, Smith A (2008) The ground state of embryonic stem cell self-renewal. Nature 453(7194):519–523. doi:10.1038/nature06968, nature06968 [pii]

    Article  CAS  PubMed  Google Scholar 

  13. Kidder BL, Hu G, Zhao K (2011) ChIP-Seq: technical considerations for obtaining high-quality data. Nat Immunol 12(10):918–922. doi:10.1038/ni.2117, ni.2117 [pii]

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Quail MA, Kozarewa I, Smith F, Scally A, Stephens PJ, Durbin R, Swerdlow H, Turner DJ (2008) A large genome center’s improvements to the Illumina sequencing system. Nat Methods 5(12):1005–1010. doi:10.1038/nmeth.1270, nmeth.1270 [pii]

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Division of Intramural Research Program of the NIH, National Heart, Lung, and Blood Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjamin L. Kidder Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Kidder, B.L., Zhao, K. (2014). Efficient Library Preparation for Next-Generation Sequencing Analysis of Genome-Wide Epigenetic and Transcriptional Landscapes in Embryonic Stem Cells. In: Kidder, B. (eds) Stem Cell Transcriptional Networks. Methods in Molecular Biology, vol 1150. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-0512-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-0512-6_1

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-0511-9

  • Online ISBN: 978-1-4939-0512-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics