Skip to main content

Protocols for Efficient Simulations of Long-Time Protein Dynamics Using Coarse-Grained CABS Model

  • Protocol
  • First Online:
Protein Structure Prediction

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1137))

Abstract

Coarse-grained (CG) modeling is a well-acknowledged simulation approach for getting insight into long-time scale protein folding events at reasonable computational cost. Depending on the design of a CG model, the simulation protocols vary from highly case-specific—requiring user-defined assumptions about the folding scenario—to more sophisticated blind prediction methods for which only a protein sequence is required. Here we describe the framework protocol for the simulations of long-term dynamics of globular proteins, with the use of the CABS CG protein model and sequence data. The simulations can start from a random or a selected (e.g., native) structure. The described protocol has been validated using experimental data for protein folding model systems—the prediction results agreed well with the experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kmiecik S, Jamroz M, Kolinski A (2011) Multiscale approach to protein folding dynamics. In: Kolinski A (ed) Multiscale approaches to protein modeling. Springer, New York, pp 281–294

    Google Scholar 

  2. Lindorff-Larsen K, Piana S, Dror RO, Shaw DE (2011) How fast-folding proteins fold. Science 334:517–520

    Article  CAS  PubMed  Google Scholar 

  3. Schaeffer RD, Fersht A, Daggett V (2008) Combining experiment and simulation in protein folding: closing the gap for small model systems. Curr Opin Struct Biol 18:4–9

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Rizzuti B, Daggett V (2013) Using simulations to provide the framework for experimental protein folding studies. Arch Biochem Biophys 531(1–2):128–135

    Article  CAS  PubMed  Google Scholar 

  5. Kolinski A, Bujnicki JM (2005) Generalized protein structure prediction based on combination of fold-recognition with de novo folding and evaluation of models. Proteins 61(Suppl 7):84–90

    Article  CAS  PubMed  Google Scholar 

  6. Debe DA, Danzer JF, Goddard WA, Poleksic A (2006) STRUCTFAST: protein sequence remote homology detection and alignment using novel dynamic programming and profile-profile scoring. Proteins 64:960–967

    Article  CAS  PubMed  Google Scholar 

  7. Kmiecik S, Kolinski A (2007) Characterization of protein-folding pathways by reduced-space modeling. Proc Natl Acad Sci USA 104:12330–12335

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Kmiecik S, Kolinski A (2008) Folding pathway of the B1 domain of protein G explored by multiscale modeling. Biophys J 94:726–736

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Kmiecik S, Gront D, Kouza M, Kolinski A (2012) From coarse-grained to atomic-level characterization of protein dynamics: transition state for the folding of B domain of protein A. J Phys Chem B 116:7026–7032

    Article  CAS  PubMed  Google Scholar 

  10. Kmiecik S, Kolinski A (2011) Simulation of chaperonin effect on protein folding: a shift from nucleation-condensation to framework mechanism. J Am Chem Soc 133:10283–10289

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Kmiecik S, Kurcinski M, Rutkowska A, Gront D, Kolinski A (2006) Denatured proteins and early folding intermediates simulated in a reduced conformational space. Acta Biochim Pol 53:131–144

    CAS  PubMed  Google Scholar 

  12. Jamroz M, Orozco M, Kolinski A, Kmiecik S (2013) Consistent view of protein fluctuations from all-atom molecular dynamics and coarse-grained dynamics with knowledge-based force-field. J Chem Theory Comput 9:119–125

    Article  CAS  Google Scholar 

  13. Kmiecik S, Gront D, Kolinski A (2007) Towards the high-resolution protein structure prediction. Fast refinement of reduced models with all-atom force field. BMC Struct Biol 7:43

    Article  PubMed Central  PubMed  Google Scholar 

  14. Kabsch W, Sander C (1983) Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers 22:2577–2637

    Article  CAS  PubMed  Google Scholar 

  15. Kolinski A (2004) Protein modeling and structure prediction with a reduced representation. Acta Biochim Pol 51:349–371

    CAS  PubMed  Google Scholar 

  16. Jamroz M, Kolinski A (2013) ClusCo: clustering and comparison of protein models. BMC Bioinformatics 14:62

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Maisuradze GG, Liwo A, Scheraga HA (2009) Principal component analysis for protein folding dynamics. J Mol Biol 385:312–329

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Xu D, Zhang Y (2011) Improving the physical realism and structural accuracy of protein models by a two-step atomic-level energy minimization. Biophys J 101:2525–2534

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Gront D, Kmiecik S, Kolinski A (2007) Backbone building from quadrilaterals: a fast and accurate algorithm for protein backbone reconstruction from alpha carbon coordinates. J Comput Chem 28:1593–1597

    Article  CAS  PubMed  Google Scholar 

  20. Krivov GG, Shapovalov MV, Dunbrack RL Jr (2009) Improved prediction of protein side-chain conformations with SCWRL4. Proteins 77:778–795

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Pollastri G, McLysaght A (2005) Porter: a new, accurate server for protein secondary structure prediction. Bioinformatics 21:1719–1720

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors acknowledge support from a TEAM project (TEAM/2011-7/6) co-financed by the EU European Regional Development Fund operated within the Innovative Economy Operational Program and from Polish National Science Center (Grant No. NN301071140) and from Polish Ministry of Science and Higher Education (Grant No. IP2011 024371).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Jamroz, M., Kolinski, A., Kmiecik, S. (2014). Protocols for Efficient Simulations of Long-Time Protein Dynamics Using Coarse-Grained CABS Model. In: Kihara, D. (eds) Protein Structure Prediction. Methods in Molecular Biology, vol 1137. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-0366-5_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-0366-5_16

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-0365-8

  • Online ISBN: 978-1-4939-0366-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics