Skip to main content

Pairwise and Multimeric Protein–Protein Docking Using the LZerD Program Suite

  • Protocol
  • First Online:
Protein Structure Prediction

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1137))

Abstract

Physical interactions between proteins are involved in many important cell functions and are key for understanding the mechanisms of biological processes. Protein–protein docking programs provide a means to computationally construct three-dimensional (3D) models of a protein complex structure from its component protein units. A protein docking program takes two or more individual 3D protein structures, which are either experimentally solved or computationally modeled, and outputs a series of probable complex structures.

In this chapter we present the LZerD protein docking suite, which includes programs for pairwise docking, LZerD and PI-LZerD, and multiple protein docking, Multi-LZerD, developed by our group. PI-LZerD takes protein docking interface residues as additional input information. The methods use a combination of shape-based protein surface features as well as physics-based scoring terms to generate protein complex models. The programs are provided as stand-alone programs and can be downloaded from http://kiharalab.org/proteindocking.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rose PW, Bi C, Bluhm WF et al (2013) The RCSB Protein Data Bank: new resources for research and education. Nucleic Acids Res 41:D475–D482. doi:10.1093/nar/gks1200

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Ben-Zeev E, Eisenstein M (2003) Weighted geometric docking: incorporating external information in the rotation-translation scan. Proteins 52:24–27. doi:10.1002/prot.10391

    Article  CAS  PubMed  Google Scholar 

  3. Chen R, Li L, Weng Z (2003) ZDOCK: an initial-stage protein-docking algorithm. Proteins 52:80–87. doi:10.1002/prot.10389

    Article  CAS  PubMed  Google Scholar 

  4. Dominguez C, Boelens R, Bonvin AMJJ (2003) HADDOCK: a protein-protein docking approach based on biochemical or biophysical information. J Am Chem Soc 125:1731–1737. doi:10.1021/ja026939x

    Article  CAS  PubMed  Google Scholar 

  5. Gray JJ, Moughon S, Wang C et al (2003) Protein-protein docking with simultaneous optimization of rigid-body displacement and side-chain conformations. J Mol Biol 331:281–299

    Article  CAS  PubMed  Google Scholar 

  6. Moreira IS, Fernandes PA, Ramos MJ (2010) Protein-protein docking dealing with the unknown. J Comput Chem 31:317–342. doi:10.1002/jcc.21276

    CAS  PubMed  Google Scholar 

  7. Pierce B, Weng Z (2007) ZRANK: reranking protein docking predictions with an optimized energy function. Proteins 67:1078–1086. doi:10.1002/prot.21373

    Article  CAS  PubMed  Google Scholar 

  8. Ritchie DW (2008) Recent progress and future directions in protein-protein docking. Curr Protein Pept Sci 9:1–15

    Article  CAS  PubMed  Google Scholar 

  9. Schneidman-Duhovny D, Inbar Y, Nussinov R, Wolfson HJ (2005) PatchDock and SymmDock: servers for rigid and symmetric docking. Nucleic Acids Res 33:W363–W367. doi:10.1093/nar/gki481

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Tovchigrechko A, Vakser IA (2006) GRAMM-X public web server for protein-protein docking. Nucleic Acids Res 34:W310–W314. doi:10.1093/nar/gkl206

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Venkatraman V, Yang YD, Sael L, Kihara D (2009) Protein-protein docking using region-based 3D Zernike descriptors. BMC Bioinforma 10:407. doi:10.1186/1471-2105-10-407

    Article  Google Scholar 

  12. André I, Bradley P, Wang C, Baker D (2007) Prediction of the structure of symmetrical protein assemblies. Proc Natl Acad Sci USA 104:17656–17661. doi:10.1073/pnas.0702626104

    Article  PubMed Central  PubMed  Google Scholar 

  13. Inbar Y, Benyamini H, Nussinov R, Wolfson HJ (2005) Prediction of multimolecular assemblies by multiple docking. J Mol Biol 349:435–447. doi:10.1016/j.jmb.2005.03.039

    Article  CAS  PubMed  Google Scholar 

  14. Berchanski A, Eisenstein M (2003) Construction of molecular assemblies via docking: modeling of tetramers with D2 symmetry. Proteins 53:817–829. doi:10.1002/prot.10480

    Article  CAS  PubMed  Google Scholar 

  15. Comeau SR, Camacho CJ (2005) Predicting oligomeric assemblies: N-mers a primer. J Struct Biol 150:233–244. doi:10.1016/j.jsb.2005.03.006

    Article  CAS  PubMed  Google Scholar 

  16. Karaca E, Melquiond ASJ, De Vries SJ et al (2010) Building macromolecular assemblies by information-driven docking: introducing the HADDOCK multi-body docking server. Mol Cell Proteomics 9:1784–1794. doi:10.1074/mcp.M000051-MCP201

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Esquivel-Rodríguez J, Yang YD, Kihara D (2012) Multi-LZerD: multiple protein docking for asymmetric complexes. Proteins 7:1818–1833. doi:10.1002/prot.24079

    Google Scholar 

  18. Wolfson HJ, Rigoutsos I (1997) Geometric hashing: an overview. IEEE Comput Sci Eng 4:10–21. doi:10.1109/99.641604

    Article  Google Scholar 

  19. Canterakis N (1999) 3D Zernike moments and Zernike affine invariants for 3d image analysis and recognition. 11th scandinavian conference on image analysis

    Google Scholar 

  20. Novotni M, Klein R (2003) 3D zernike descriptors for content based shape retrieval. Proceedings of the eighth ACM symposium on solid modeling and applications—SM’03. ACM Press, New York, NY, USA, p 216

    Book  Google Scholar 

  21. Kihara D, Sael L, Chikhi R, Esquivel-Rodríguez J (2011) Molecular surface representation using 3D Zernike descriptors for protein shape comparison and docking. Curr Protein Pept Sci 12:520–530, doi: http://dx.doi.org/10.2174/138920311796957612

    Google Scholar 

  22. Sael L, Kihara D (2009) Protein surface representation and comparison: new approaches in structural proteomics. In: Chen JY, Lonardi S (eds) Biological data mining. Chapman & Hall/CRC, Boca Raton, FL, pp 89–109

    Google Scholar 

  23. Li B, Kihara D (2012) Protein docking prediction using predicted protein-protein interface. BMC Bioinforma 13:7. doi:10.1186/1471-2105-13-7

    Article  Google Scholar 

  24. Esquivel-Rodríguez J, Kihara D (2012) Effect of conformation sampling strategies in genetic algorithm for multiple protein docking. BMC Proc 6 Suppl 7:S4. doi: 10.1186/1753-6561-6-S7-S4

  25. Esquivel-Rodríguez J, Kihara D (2012) Fitting multimeric protein complexes into electron microscopy maps using 3D Zernike descriptors. J Phys Chem B 23:6854–6861. doi:10.1021/jp212612t

    Article  Google Scholar 

  26. Esquivel-Rodríguez J, Kihara D (2012) Evaluation of multiple protein docking structures using correctly predicted pairwise subunits. BMC Bioinforma 13:S6. doi:10.1186/1471-2105-13-S2-S6

    Article  Google Scholar 

  27. La D, Kihara D (2012) A novel method for protein-protein interaction site prediction using phylogenetic substitution models. Proteins 80:126–141. doi:10.1002/prot.23169

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Qin S, Zhou H-X (2007) meta-PPISP: a meta web server for protein-protein interaction site prediction. Bioinformatics 23:3386–3387. doi:10.1093/bioinformatics/btm434

    Article  CAS  PubMed  Google Scholar 

  29. McDonald IK, Thornton JM (1994) Satisfying hydrogen bonding potential in proteins. J Mol Biol 238:777–793. doi:10.1006/jmbi.1994.1334

    Article  CAS  PubMed  Google Scholar 

  30. Hwang H, Vreven T, Janin J, Weng Z (2010) Protein-protein docking benchmark version 4.0. Proteins 78:3111–3114. doi:10.1002/prot.22830

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Schrödinger L (2010) The PyMOL Molecular Graphics System, Version 1.5.0.4

    Google Scholar 

Download references

Acknowledgments

The authors thank Kristen Johnson for proofreading the manuscript. This work has been supported by grants from the National Institutes of Health (R01GM075004 and R01GM097528), National Science Foundation (EF0850009, DBI1262189, IOS1127027, IIS1319551), and National Research Foundation of Korea Grant funded by the Korean Government (NRF-2011-220-C00004). J.E.R. would like to thank the Fulbright Science and Technology program for supporting his first years of graduate studies.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Esquivel-Rodriguez, J., Filos-Gonzalez, V., Li, B., Kihara, D. (2014). Pairwise and Multimeric Protein–Protein Docking Using the LZerD Program Suite. In: Kihara, D. (eds) Protein Structure Prediction. Methods in Molecular Biology, vol 1137. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-0366-5_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-0366-5_15

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-0365-8

  • Online ISBN: 978-1-4939-0366-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics