Skip to main content

DOCK/PIERR: Web Server for Structure Prediction of Protein–Protein Complexes

  • Protocol
  • First Online:
Protein Structure Prediction

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1137))

Abstract

In protein docking we aim to find the structure of the complex formed when two proteins interact. Protein–protein interactions are crucial for cell function. Here we discuss the usage of DOCK/PIERR. In DOCK/PIERR, a uniformly discrete sampling of orientations of one protein with respect to the other, are scored, followed by clustering, refinement, and reranking of structures. The novelty of this method lies in the scoring functions used. These are obtained by examining hundreds of millions of correctly and incorrectly docked structures, using an algorithm based on mathematical programming, with provable convergence properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gray JJ (2006) High-resolution protein-protein docking. Curr Opin Struct Biol 16(2):183–193. doi:10.1016/J.Sbi.2006.03.003

    Article  CAS  PubMed  Google Scholar 

  2. Janin J, Bahadur RP, Chakrabarti P (2008) Protein-protein interaction and quaternary structure. Q Rev Biophys 41(2):133–180. doi:10.1017/S0033583508004708

    Article  CAS  PubMed  Google Scholar 

  3. Chen R, Li L, Weng ZP (2003) ZDOCK: an initial-stage protein-docking algorithm. Proteins Struct Funct Genetics 52(1):80–87. doi:10.1002/Prot.10389

    Article  CAS  Google Scholar 

  4. Comeau SR, Gatchell DW, Vajda S, Camacho CJ (2004) ClusPro: a fully automated algorithm for protein-protein docking. Nucleic Acids Res 32:W96–W99. doi:10.1093/Nar/Gkh354

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Tovchigrechko A, Vakser IA (2005) Development and testing of an automated approach to protein docking. Proteins 60(2):296–301. doi:10.1002/Prot.20573

    Article  CAS  PubMed  Google Scholar 

  6. Gray JJ, Moughon S, Wang C, Schueler-Furman O, Kuhlman B, Rohl CA, Baker D (2003) Protein-protein docking with simultaneous optimization of rigid-body displacement and side-chain conformations. J Mol Biol 331(1):281–299. doi:10.1016/S0022-2836(03)00670-3

    Article  CAS  PubMed  Google Scholar 

  7. Wang C, Bradley P, Baker D (2007) Protein-protein docking with backbone flexibility. J Mol Biol 373(2):503–519. doi:10.1016/J.Jmb.2007.07.050

    Article  CAS  PubMed  Google Scholar 

  8. Duhovny D, Nussinov R, Wolfson HJ (2002) Efficient unbound docking of rigid molecules. Lect Notes Comput Sci 2452: 185–200

    Article  Google Scholar 

  9. Li L, Chen R, Weng ZP (2003) RDOCK: refinement of rigid-body protein docking predictions. Proteins Struct Funct Genetics 53(3):693–707. doi:10.1002/Prot.10460

    Article  CAS  Google Scholar 

  10. Wang C, Schueler-Furman O, Baker D (2005) Improved side-chain modeling for protein-protein docking. Protein Sci 14(5):1328–1339. doi:10.1110/Ps.041222905

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Wagner M, Meller J, Elber R (2004) Large-scale linear programming techniques for the design of protein folding potentials. Math Program 101(2):301–318. doi:10.1007/S10107-004-0526-7

    Article  Google Scholar 

  12. Ravikant DVS, Elber R (2011) Energy design for protein-protein interactions. J Chem Phys 135(6):065102. doi:10.1063/1.3615722

    Google Scholar 

  13. Viswanath S, Ravikant DVS, Elber R (2013) Improving ranking of models for protein complexes with side chain modeling and atomic potentials. Proteins 81(4):592–606. doi:10.1002/prot.24214

    Article  CAS  PubMed  Google Scholar 

  14. Lensink M, Wodak SJ (2013) Docking, Scoring and Affinity Prediction in CAPRI. 81(12):2082–2095. doi: 10.1002/prot.24428

    Google Scholar 

  15. Krivov GG, Shapovalov MV, Dunbrack RL (2009) Improved prediction of protein side-chain conformations with SCWRL4. Proteins 77(4):778–795. doi:10.1002/Prot.22488

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Elber R, Roitberg A, Simmerling C, Goldstein R, Li HY, Verkhivker G, Keasar C, Zhang J, Ulitsky A (1995) Moil—a program for simulations of macromolecules. Comput Phys Commun 91(1–3):159–189

    Article  CAS  Google Scholar 

  17. Ravikant DVS, Elber R (2010) PIE-efficient filters and coarse grained potentials for unbound protein-protein docking. Proteins 78(2):400–419. doi:10.1002/Prot.22550

    Article  CAS  PubMed  Google Scholar 

  18. The PyMOL Molecular Graphics System, Version 1.5.0.4 Schrödinger, LLC.

    Google Scholar 

  19. Hunt ME, Modi CK, Aglyamova GV, Ravikant DVS, Meyer E, Matz MV (2012) Multi-domain GFP-like proteins from two species of marine hydrozoans. Photochem Photobiol Sci 11(4):637–644. doi:10.1039/c1pp05238a

    Article  CAS  PubMed  Google Scholar 

  20. Millers E-KI, Lavin MF, de Jersey J, Masci PP, Guddat LW. Crystal structure of textilinin-1, a Kunitz-type serine protease inhibitor from the Australian Common Brown snake venom, in complex with trypsin. RCSB PDB entry 3D65, http://www.rcsb.org/rxplore/explore.do?structureId=3d65. Accessed 5 June 2013

  21. Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25(17):3389–3402

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Sali A, Blundell TL (1993) Comparative protein modeling by satisfaction of spatial restraints. J Mol Biol 234(3):779–815

    Article  CAS  PubMed  Google Scholar 

  23. Eswar N, John B, Mirkovic N, Fiser A, Ilyin VA, Pieper U, Stuart AC, Marti-Renom MA, Madhusudhan MS, Yerkovich B, Sali A (2003) Tools for comparative protein structure modeling and analysis. Nucleic Acids Res 31(13):3375–3380. doi:10.1093/Nar/Gkg543

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Vallat BK, Pillardy J, Majek P, Meller J, Blom T, Cao B, Elber R (2009) Building and assessing atomic models of proteins from structural templates: learning and benchmarks. Proteins 76(4):930–945. doi:10.1002/prot.22401

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Vallat BK, Pillardy J, Elber R (2008) A template-finding algorithm and a comprehensive benchmark for homology modeling of proteins. Proteins 72(3):910–928. doi:10.1002/prot.21976

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Roy A, Kucukural A, Zhang Y (2010) I-TASSER: a unified platform for automated protein structure and function prediction. Nat Protoc 5(4): 725–738. doi:10.1038/nprot.2010.510.1038/nprot.2010.5

    Google Scholar 

Download references

Acknowledgements

The authors acknowledge funding from NIH grant GM59796 and Welch grant F-1783.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Viswanath, S., Ravikant, D.V.S., Elber, R. (2014). DOCK/PIERR: Web Server for Structure Prediction of Protein–Protein Complexes. In: Kihara, D. (eds) Protein Structure Prediction. Methods in Molecular Biology, vol 1137. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-0366-5_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-0366-5_14

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-0365-8

  • Online ISBN: 978-1-4939-0366-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics