Skip to main content

Construction of Self-Replicating Subgenomic Dengue Virus 4 (DENV4) Replicon

  • Protocol
  • First Online:
Dengue

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1138))

Abstract

Dengue virus serotypes 1–4 are members of mosquito-borne flavivirus genus of Flaviviridae family that encode one long open reading frame (ORF) that is translated to a polyprotein. Both host and virally encoded proteases function in the processing of the polyprotein by co-translational and posttranslational mechanisms to yield 10 mature proteins prior to viral RNA replication. To study cis- and trans-acting factors involved in viral RNA replication, many groups [1–8] have constructed cDNAs encoding West Nile virus (WNV), DENV, or yellow fever virus reporter replicon RNAs. The replicon plasmids constructed in our laboratory for WNV [9] and the DENV4 replicon described here are arranged in the order of 5′-untranslated region (UTR), the N-terminal coding sequence of capsid (C), Renilla luciferase (Rluc) reporter gene with a translation termination codon, and an internal ribosome entry site (IRES) element from encephalomyocarditis virus (EMCV) for cap-independent translation of the downstream ORF that codes for a polyprotein precursor, CterE-NS1-NS2A-NS2B-NS3-NS4A-NS4B-NS5, followed by the 3′-UTR. In the second DENV4 replicon, the Rluc gene is fused sequentially downstream to the 20 amino acid (aa) FMDV 2A protease coding sequence, neomycin resistance gene (Neor), a termination codon, and the EMCV leader followed by the same polyprotein coding sequence and 3′-UTR as in the first replicon. The first replicon is useful to study by transient transfection experiments the cis-acting elements and trans-acting factors involved in viral RNA replication. The second DENV4 replicon is used to establish a stable monkey kidney (Vero) cell line by transfection of replicon RNA and selection in the presence of the G418, an analog of neomycin. This replicon is useful for screening and identifying antiviral compounds that are potential inhibitors of viral replication.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Khromykh AA, Meka H, Guyatt KJ, Westaway EG (2001) Essential role of cyclization sequences in flavivirus RNA replication. J Virol 75(14):6719–6728

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Lo MK, Tilgner M, Bernard KA, Shi PY (2003) Functional analysis of mosquito-borne flavivirus conserved sequence elements within 3′ untranslated region of West Nile virus by use of a reporting replicon that differentiates between viral translation and RNA replication. J Virol 77(18):10004–10014

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Alvarez DE, Lodeiro MF, Luduena SJ, Pietrasanta LI, Gamarnik AV (2005) Long-range RNA–RNA interactions circularize the dengue virus genome. J Virol 79(11): 6631–6643

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Jones M, Davidson A, Hibbert L, Gruenwald P, Schlaak J, Ball S, Foster GR, Jacobs M (2005) Dengue virus inhibits alpha interferon signaling by reducing STAT2 expression. J Virol 79(9):5414–5420

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Jones CT, Patkar CG, Kuhn RJ (2005) Construction and applications of yellow fever virus replicons. Virology 331(2):247–259

    Article  CAS  PubMed  Google Scholar 

  6. Ng CY, Gu F, Phong WY, Chen YL, Lim SP, Davidson A, Vasudevan SG (2007) Construction and characterization of a stable subgenomic dengue virus type 2 replicon system for antiviral compound and siRNA testing. Antivir Res 76(3):222–231. doi:10.1016/j.antiviral.2007.06.007

    Article  CAS  PubMed  Google Scholar 

  7. Puig-Basagoiti F, Tilgner M, Forshey BM, Philpott SM, Espina NG, Wentworth DE, Goebel SJ, Masters PS, Falgout B, Ren P, Ferguson DM, Shi PY (2006) Triaryl pyrazoline compound inhibits flavivirus RNA replication. Antimicrob Agents Chemother 50(4):1320–1329. doi:10.1128/AAC.50.4.1320-1329.2006, 50/4/1320 [pii]

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Manzano M, Reichert ED, Polo S, Falgout B, Kasprzak W, Shapiro BA, Padmanabhan R (2011) Identification of cis-acting elements in the 3′-untranslated region of the dengue virus type 2 RNA that modulate translation and replication. J Biol Chem 286(25):22521–22534. doi:10.1074/jbc.M111.234302

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Alcaraz-Estrada SL, Reichert ED, Padmanabhan R (2013) Construction of self-replicating subgenomic West Nile virus replicons for screening antiviral compounds. Methods Mol Biol 1030:283–299. doi:10.1007/978-1-62703-484-5_22

    Article  CAS  PubMed  Google Scholar 

  10. Spencer F, Ketner G, Connelly C, Hieter P (1993) Targeted recombination-based cloning and manipulation of large DNA segments in yeast. Meth Comp Meth Enzymol 5: 161–175

    Article  CAS  Google Scholar 

  11. You S, Padmanabhan R (1999) A novel in vitro replication system for Dengue virus. Initiation of RNA synthesis at the 3′-end of exogenous viral RNA templates requires 5′- and 3′-terminal complementary sequence motifs of the viral RNA. J Biol Chem 274(47): 33714–33722

    Article  CAS  PubMed  Google Scholar 

  12. Filomatori CV, Lodeiro MF, Alvarez DE, Samsa MM, Pietrasanta L, Gamarnik AV (2006) A 5′ RNA element promotes dengue virus RNA synthesis on a circular genome. Gene Dev 20(16):2238–2249

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Clyde K, Harris E (2006) RNA secondary structure in the coding region of dengue virus type 2 directs translation start codon selection and is required for viral replication. J Virol 80(5):2170–2182

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Falgout B, Chanock R, Lai CJ (1989) Proper processing of dengue virus nonstructural glycoprotein NS1 requires the N-terminal hydrophobic signal sequence and the downstream nonstructural protein NS2a. J Virol 63(5): 1852–1860

    CAS  PubMed Central  PubMed  Google Scholar 

  15. Ruggli N, Rice CM (1999) Functional cDNA clones of the Flaviviridae: strategies and applications. Adv Virus Res 53:183–207

    Article  CAS  PubMed  Google Scholar 

  16. Rice CM, Grakoui A, Galler R, Chambers TJ (1989) Transcription of infectious yellow fever RNA from full-length cDNA templates produced by in vitro ligation. New Biol 1(3): 285–296

    CAS  PubMed  Google Scholar 

  17. Kapoor M, Zhang L, Mohan PM, Padmanabhan R (1995) Synthesis and characterization of an infectious dengue virus type-2 RNA genome (New Guinea C strain). Gene 162(2):175–180

    Article  CAS  PubMed  Google Scholar 

  18. Polo S, Ketner G, Levis R, Falgout B (1997) Infectious RNA transcripts from full-length dengue virus type 2 cDNA clones made in yeast. J Virol 71(7):5366–5374

    CAS  PubMed Central  PubMed  Google Scholar 

  19. Alcaraz-Estrada SL, Manzano MI, Del Angel RM, Levis R, Padmanabhan R (2010) Construction of a dengue virus type 4 reporter replicon and analysis of temperature-sensitive mutations in non-structural proteins 3 and 5. J Gen Virol 91(Pt 11):2713–2718. doi:10.1099/vir.0.024083-0, doi:vir.0.024083-0 [pii]

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Kouprina N, Eldarov M, Moyzis R, Resnick M, Larionov V (1994) A model system to assess the integrity of mammalian YACs during transformation and propagation in yeast. Genomics 21(1):7–17. doi:10.1006/geno.1994.1218

    Article  CAS  PubMed  Google Scholar 

  21. Khromykh AA, Kenney MT, Westaway EG (1998) trans-Complementation of flavivirus RNA polymerase gene NS5 by using Kunjin virus replicon-expressing BHK cells. J Virol 72(9):7270–7279

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

The research was supported by NIH grants R01 AI-32078 and U01 AI 54776 (R.P.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Radhakrishnan Padmanabhan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Alcaraz-Estrada, S.L., del Angel, R., Padmanabhan, R. (2014). Construction of Self-Replicating Subgenomic Dengue Virus 4 (DENV4) Replicon. In: Padmanabhan, R., Vasudevan, S. (eds) Dengue. Methods in Molecular Biology, vol 1138. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-0348-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-0348-1_9

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-0347-4

  • Online ISBN: 978-1-4939-0348-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics