Skip to main content

Bioavailability of Energy and the Starvation State

  • Chapter
Starvation in Bacteria

Abstract

Starvation-survival has been defined as the physiological state resulting from an insufficient amount of nutrients, especially energy, for the growth (increase in size) and multiplication of microorganisms (Morita, 1982). The normal state for most of the bacteria in the ocean is the starvation mode and the microbes, themselves, make most ecosystems oligotrophic (Morita, 1987). The latter situation results from the fact that there are all physiological types of bacteria in any environment as well as abilities to rapidly utilize various substrates. Yet, survival of the species, especially in relation to the lack of energy, is a subject rarely addressed by microbiologists.

Feast or famine (Koch, 1971), fast or famine (Poindexter, 1981),

or fast and famine with rare feast

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aiken, G. R., McKnight, D. M., Wershaw, R. L., and MacCarthy, P., 1985, Humic Substances in Soil, Sediment and Water, Wiley, New York.

    Google Scholar 

  • Akagi, Y., Taga, N., and Simidu, U., 1977, Isolation and distribution of oligotrophic marine bacteria, Can. J. Microbiol. 23: 981–987.

    Article  Google Scholar 

  • Alexander, M., 1965, Biodegradation: Problems of molecular recalcitrance and microbial fallibility, Adv. Appl. Microbiol. 7: 35–76.

    Article  PubMed  CAS  Google Scholar 

  • Alexander, M., 1973, Non biodegradable and other recalcitrant molecules, Biotechnol. Bioeng. 15: 611–647.

    Article  CAS  Google Scholar 

  • Ammerman, J. W., Fuhrman, J. A., Hagström, A., and Azam, F., 1984, Bacterioplankton growth in seawater: 1. Growth kinetics and cellular characteristics in seawater cultures, Mar. Ecol. Prog. Ser. 18: 31–39.

    Article  Google Scholar 

  • Amy, P S., and Monta, R. Y., 1983a, Starvation-survival patterns of sixteen freshly isolated open-ocean bacteria, Appl. Environ. Microbiol. 45: 1109–1115.

    PubMed  CAS  Google Scholar 

  • Amy, P S., and Monta, R. Y, 1983b, Protein patterns of growing and starved cells of a marine Vibrio sp., Appl. Environ. Microbiol. 45: 1685–1690.

    PubMed  CAS  Google Scholar 

  • Amy, R S., Pauling, C., and Morita, R. Y, 1983b, Recovery from nutrient starvation by a marine Vibrio sp., Appl. Environ. Microbiol. 45: 1685–1690.

    PubMed  CAS  Google Scholar 

  • Anderson, G., 1957, Nucleic acid derivatives in soil, Nature 260: 597.

    Article  Google Scholar 

  • Anderson, G., 1958, Identification of derivative of desoxyribonucleic acid in humic acid, Soil Sci. 86: 169–174.

    Article  CAS  Google Scholar 

  • Anderson, G., 1961, Estimation of purines and pyrimidines in soil humic acid, Soil Sci. 91: 156–161.

    Article  CAS  Google Scholar 

  • Anderson, J. I. W., and Heffernan, W. P., 1965, Isolation and characterization of filterable marine bacteria, J. Bacteriol. 90: 1713–1718.

    PubMed  CAS  Google Scholar 

  • Ansback, J., and Blackburn, T. H., 1980, A method for the analysis of acetate turnover in a coastal marine sediment, Microb. Ecol. 5: 253–264.

    Article  Google Scholar 

  • Arons, A. B., and Stommel, H., 1967, On the abyssal circulation of the world oceans, Deep-Sea Res. 14: 441–457.

    Google Scholar 

  • Bae, H. C., Cota-Robles, E. H., and Casida, L. E., Jr., 1972, Microflora of soil as viewed by transmission electron microscopy, Appl. Microbiol. 23: 637–648.

    PubMed  CAS  Google Scholar 

  • Bakken, L. R., and Olsen, R. A., 1987, The relationship between cell size and viability of soil bacteria, Microb. Ecol. 13: 103–114.

    Article  Google Scholar 

  • Balba, M. T., and Nedwell, D. B., 1982, Microbial metabolism of acetate, propionate, and butyrate in anoxic sediment from Colne Point saltmarsh, Essex, U.K. J. Gen. Microbiol. 128: 1415–1422.

    CAS  Google Scholar 

  • Barber, D. A., and Lynch, J. M., 1977, Microbial growth in the rhizosphere, Soil Biol. Biochem. 9: 305–308.

    Article  CAS  Google Scholar 

  • Barber, R. T., 1986, Dissolved organic carbon from deep sea waters resists microbial oxidation, Nature 220: 274–275.

    Article  Google Scholar 

  • Beauchamp, E. G., Trevors, J. T., and Paul, P W., 1989, Carbon sources for bacterial denitrification, Adv. Soil Sci. 10: 113–142.

    Article  CAS  Google Scholar 

  • Benoit, R. E., and Starkey, R. L., 1968, Enzyme inactivation as a factor in the inhibition of the decomposition of organic matter by tannins, Soil Sci. 105: 203–208.

    Article  CAS  Google Scholar 

  • Bollen, W. B., 1977, Sulfur oxidation and respiration in 54-year soil samples, Soil Biol. Biochem. 9: 405–410.

    Article  CAS  Google Scholar 

  • Bosco, G., 1960, Studio della sensibilita, in vitro algi antibiotics de parte di microorganismi isolate in epoca preantibiotica. Nouvi. Ann. Ingiene Microbiol. 11: 227–240.

    Google Scholar 

  • Brookes, P. C., Newcombe, A. D., and Jenkinson, D. S., 1987, Adenylate energy charge measurements in soil, Soil Biol. Biochem. 19: 211–217.

    Article  CAS  Google Scholar 

  • Bryan, B. A., 1981, Physiology and biochemistry of denitrification, in: Denitrification, Nitrification and Atmospheric Nitrous Oxide (C. C. Delwiche, ed.), Wiley, New York, pp. 67–84.

    Google Scholar 

  • Burnison, B. K., and Monta, R. Y, 1974, Heterotrophic potential of amino acid uptake in a naturally eutrophic lake, Appl. Microbiol. 27: 488–495.

    PubMed  CAS  Google Scholar 

  • Carlucci, A. F., and Williams, EN., 1978, Simulated in situ growth of pelagic marine bacteria, Naturwissenschaften 65: 541–542.

    Article  Google Scholar 

  • Casida, L. E., Jr., 1971, Microorganisms in unamended soil as observed by various forms of microscopy and staining, Appl. Microbiol. 21: 1040–1045.

    PubMed  Google Scholar 

  • Christensen, D., and Blackburn, T. H., 1980, Turnover of tracer (14C, 3H labelled) alanine in inshore marine sediments, Mar. Biol. 58: 97–103.

    Article  CAS  Google Scholar 

  • Christensen, D., and Blackburn, T. H., 1982, Turnover of 14C-labelled acetate in marine sediments, Mar. Biol. 71: 113–119.

    Article  Google Scholar 

  • Clark, E. F., 1965, The concept of competition in microbiology, in: Ecology of Soil-Borne Plant Pathogens (K. E Baker and W. C. Snyder, eds.), University of California Press, Berkeley, pp. 339–347.

    Google Scholar 

  • Cortez, E J., Griffith, S. M., and Schnitzer, M., 1976, The distribution of nitrogen in some highly organic tropical volcanic soils, Soil Biol. Biochem. 8: 55–60.

    Article  Google Scholar 

  • Craig, H., 1971, The deep sea metabolism: Oxygen consumption in abyssal ocean water, J. Geophys. Res. 76: 5078–5086.

    Article  CAS  Google Scholar 

  • Dawson R., and Gocke, K., 1978, Heterotrophic activity in comparison to the free amino acid concentration in Baltic Sea samples, Oceanol. Acta 1: 45–54.

    CAS  Google Scholar 

  • Dow, C. S., Whittenbury, R., and Carr, N. G., 1983, The’ shut-down’ or ‘growth precursor’ cell—An adaptation for survival in a potentially hostile environment, Symp. Soc. Gen. Microbiol. 34: 187–247.

    Google Scholar 

  • Estermann, E. F., Peterson, G. H., and McLaren, A. D., 1959, Digestion of clay-protein, ligninprotein, and silica-protein complexes by enzymes and bacteria, Soil Sci. Soc. Am. Proc. 23: 31–36.

    Article  CAS  Google Scholar 

  • Fallon, R. D., Newell, S. Y, and Hopkinson, C. S., 1983, Bacterial production in marine sediments: Will cell-specific measures agree with whole system metabolism? Mar. Ecol. Prog. Ser. 11: 117–119.

    Article  Google Scholar 

  • Fenchel, T. M., and Blackburn, T. H., 1979, Bacteria and Mineral Cycling, Academic Press, New York.

    Google Scholar 

  • Garbosky, A. J., and Giambiagi, N., 1966, The survival of nitrifying bacteria in soil, Plant Soil 17: 271–278.

    Article  Google Scholar 

  • Geesey, G. G., and Morita, R. Y, 1979, Capture of arginine at low substrate concentrations by a marine psychrophilic bacterium, Appl. Environ. Microbiol. 38: 1092–1097.

    PubMed  CAS  Google Scholar 

  • Gibson, G. R., Parkes, R. J., and Herbert, R. A., 1989, Biological availability and turnover rate of acetate in marine and estuarine sediments in relation to dissimilatory sulphate reduction, FEMS Microb. Ecol. 62: 303–306.

    Article  CAS  Google Scholar 

  • Gocke, K., Dawson, R., and Liebezeit, G., 1981, Availability of dissolved free glucose to heterotrophic microorganisms, Mar. Biol. 62: 209–216.

    Article  CAS  Google Scholar 

  • Gordon, R., 1970, Some studies on the distribution and composition of paniculate organic carbon in the North Atlantic Ocean, Deep Sea Res. 17: 233–243.

    CAS  Google Scholar 

  • Gottschal, J. C., 1992, Substrate capturing and growth in various ecosystems, J. Appl. Bacteriol. Symp. Suppl. 72: 93–102.

    Google Scholar 

  • Gray, T. R. G., 1976, Survival of vegetative microbes in soil, Symp. Soc. Gen. Microbiol. 26: 327–364.

    CAS  Google Scholar 

  • Gray, T. R. G., and Williams, S. T., 1971, Microbial productivity in soil, Symp. Soc. Gen. Microbiol. 21: 255–286.

    Google Scholar 

  • Griffin, G. J., and Roth, D. A., 1979, Nutritional aspects of soil mycostasis, in: Soil-Borne Plant Pathogens (B. Schippers and W. Gams, eds.), Academic Press, New York, pp. 79–96.

    Google Scholar 

  • Gronlund, A. F., and Campbell, J. J. R., 1963, Nitrogenous substrates of endogenous respiration in Pseudomonas aeruginosa, J. Bacteriol 86: 58–66.

    PubMed  CAS  Google Scholar 

  • Guckert, J. B., Hood, M. A., and White, D. C., 1986, Phospholipid ester-linked fatty acid profile changes during nutrient deprivation of Vibrio cholerae: Increase in cis-trans ratio and proportions of cyclopropyl fatty acids, Appl. Environ. Microbiol. 52: 794–801.

    PubMed  CAS  Google Scholar 

  • Harowitz, A., Krichevsky, M. J., and Atlas, R. M., 1983, Characteristics and diversity of subartic marine oligotrophic, stenoheterotrophic, and euryheterotrophic bacterial populations, Can. J. Microbiol. 29: 527–535.

    Article  Google Scholar 

  • Harrison, A. P., and Lawrence, F. R., 1963, Phenotypic, genotypic, and chemical changes in starving populations of Aerobacter aerogenes, J. Bacteriol. 85: 742–750.

    PubMed  CAS  Google Scholar 

  • Hood, M. A., Guckert, J. B., White, D. C., and Deck, F., 1986, Effect of nutrient deprivation on lipid, carbohydrates, DNA, RNA, and protein levels in Vibrio cholerae, Appl. Environ. Microbiol. 52: 788–793.

    PubMed  CAS  Google Scholar 

  • Jenkinson, D. S., and Ladd, J. N., 1981, Microbial biomass in soil, measurement and turnover, Soil Biochem. 5: 415–471.

    CAS  Google Scholar 

  • Johnstone, B. H., and Jones, R. D., 1988a, Effects of light and CO on the survival of a marine ammonium-oxidizing bacterium during energy source deprivation, Appl. Environ. Microbiol. 54: 2890–2893.

    PubMed  CAS  Google Scholar 

  • Johnstone, B. H., and Jones, R. D., 1988b, Physiological effects of long-term energy-source deprivation on the survival of a marine chemolithotrophic ammonium-oxidizing bacterium, Mar. Ecol. Prog. Ser. 49: 295–303.

    Article  CAS  Google Scholar 

  • Johnstone, B. H., and Jones, R. D., 1988c, Recovery of a marine chemolithotrophic ammoniumoxidizing bacterium from long-term energy-source deprivation, Can J. Microbiol. 34: 1347–1350.

    Article  CAS  Google Scholar 

  • Jones, R. D., and Monta, R. Y., 1985, Survival of a marine ammonium oxidizer under energy source deprivation, Mar. Ecol. Prog. Ser. 26: 175–179.

    Article  Google Scholar 

  • Kjelleberg, S., Humphrey, B. A., and Marshall, K. C., 1982, Effect of interfaces on small, starved marine bacteria, Appl. Environ. Microbiol. 43: 1166–1172.

    PubMed  CAS  Google Scholar 

  • Kjelleberg, S., Hermansson, M., Marden, P., and Jones, G. W, 1987, The transient phase between growth and nongrowth of heterotrophic bacteria, with special emphasis on the marine environment, Annu. Rev. Microbiol. 41: 25–50.

    Article  PubMed  CAS  Google Scholar 

  • Koch, A. L., 1971, The adaptive responses of Escherichia coli to feast and famine existence, Adv. Microb. Physiol. 6: 147–217.

    Article  PubMed  CAS  Google Scholar 

  • Kurath, G., and Morita, R. Y., 1983, Starvation-survival physiological studies of a marine Pseudomonas sp., Appl. Environ. Microbiol. 45: 1206–1211.

    PubMed  CAS  Google Scholar 

  • Lipman, C. G., 1931, Living microorganisms in ancient rocks, J. Bacteriol. 22: 183–196.

    PubMed  CAS  Google Scholar 

  • Lockwood, J. L., 1977, Fungistasis in soils, Biol. Rev. 52: 1–43.

    Article  CAS  Google Scholar 

  • Lockwood, J. L., and Filonow, A. B., 1981, Responses of fungi to nutrient-limiting conditions and to inhibitory substances in natural habitats, Adv. Microb. Ecol. 5: 1–61.

    Article  CAS  Google Scholar 

  • Lundgren, B., and Söderström, B., 1983, Bacterial numbers in a pine forest soil in relation to environmental factors, Soil Biol. Biochem. 16: 625–630.

    Article  Google Scholar 

  • Lytle, C. R., and Perdue, E. M., 1981, Free proteinaceous and humic-bound amino acids in river water containing high concentrations of aquatic humus, Environ. Sci. Technol. 15: 224–228.

    Article  PubMed  CAS  Google Scholar 

  • MacDonald, R. M., 1980, Cytochemical demonstration of catabolism in soil microorganisms, Soil Biol. Biochem. 16: 283–284.

    Google Scholar 

  • MacDonell, M. T., and Hood, M. A., 1982, Isolation and characterization of ultramicrobacteria from a Gulf Coast estuary, Appl. Environ. Microbiol. 43: 566–571.

    PubMed  CAS  Google Scholar 

  • McGill, W. B., Hunt, H. W., Woodmansee, R. G., and Reuss, J., 1981, Phoenix—A model of dynamics of carbon and nitrogen in grassland soils, Ecol. Bull. 33: 49–115.

    CAS  Google Scholar 

  • McLaren, A. D., 1973, A need for counting microorganisms in soil mineral cycles, Environ. Lett. 5: 143–154.

    Article  Google Scholar 

  • Martin, A., Jr., 1963, A filterable Vibrio from fresh water, Proc. Pa. Acad. Sci. 36: 174–178.

    Google Scholar 

  • Martin, P, and MacLeod, R. A., 1984, Observations on the distinction between oligotrophic and eutrophic marine bacteria, Appl. Environ. Microbiol. 47: 1017–1022.

    PubMed  CAS  Google Scholar 

  • Matin, A., 1991, The molecular basis of carbon-starved-induced general resistance in Escherichia coli, Mol. Microbiol. 5: 3–10.

    Article  PubMed  CAS  Google Scholar 

  • Meyer-Reil, L.-A., 1978, Autoradiography and epifluorescence microscopy combined for the determination of number and spectrum of actively metabolizing bacteria in natural waters, Appl. Environ. Microbiol. 39: 797–802.

    Google Scholar 

  • Morgan, P, and Dow, C. S., 1986, Bacterial adaptation for growth in low nutrient environments, in: Microbes in Extreme Environments (R. A. Herbert and G. A. Codd, eds.), Academic Press, New York, pp. 187–214.

    Google Scholar 

  • Morita, R. Y., 1980, Low temperature, energy, survival and time in microbial ecology, in: Microbiology—1980 (D. Schlesdsinger, ed.), American Society for Microbiology, Washington, D.C., pp. 323–324.

    Google Scholar 

  • Morita, R. Y, 1982, Starvation-survival of heterotrophs in the marine environment, Adv. Microb. Ecol. 6: 117–198.

    Google Scholar 

  • Morita, R. Y, 1984, Substrate capture by marine heterotrophic bacteria, in: Heterotrophic Activity in the Sea (J. E. Hobbie and P J. L. Williams, eds.), Plenum Press, New York, pp. 83–100.

    Chapter  Google Scholar 

  • Morita, R. Y, 1985, Starvation and miniturisation of heterotrophs, with special reference on the maintenance of the starved viable state, in: Bacteria in Natural Environments: The Effect of Nutrient Conditions (M. Fletcher and G. Floodgate, eds), Academic Press, New York, pp. 111–130.

    Google Scholar 

  • Morita, R. Y, 1987, Starvation-survival: The normal mode of most bacteria in the ocean, in: Current Perspectives in Microbial Ecology (F. Megusar and M. Gantar, eds.), Slovene Soc. Microbiol., Ljubljana, Yugoslavia, pp. 243–248.

    Google Scholar 

  • Morita, R. Y, 1988, Bioavailabiiity of energy and its relationship to growth and starvation survival in nature, Can. J. Microbiol. 34: 446–441.

    Article  Google Scholar 

  • Morita, R. Y, and ZoBell, C. E., 1955, Occurrence of bacteria in pelagic sediments collected during the Mid-Pacific Expedition, Deep Sea Res. 3: 66–73.

    Article  CAS  Google Scholar 

  • Moyer, C. L., and Morita, R. Y, 1989a, Effect of growth rate and starvation-survival on the viability and stability of a psychrophilic marine bacterium, Appl. Environ. Microbiol. 55: 1122–1127.

    PubMed  CAS  Google Scholar 

  • Moyer, C. L., and Morita, R. Y, 1989b, Effect of growth rate and starvation-survival on cellular DNA, RNA, and protein of a psychrophilic marine bacterium, Appl. Environ. Microbiol. 55: 2710–2716.

    PubMed  CAS  Google Scholar 

  • Nedwell, D. B., and Gray, T. R. G., 1987, Soils and sediments as matrices for microbial growth, Symp. Soc. Gen. Microbiol. 41: 21–54.

    Google Scholar 

  • Novitsky, J. A., 1987, Microbial growth rates and biomass production in a marine sediment: Evidence for a very active mostly nongrowing community, Appl. Environ. Microbiol. 53: 2368–2372.

    PubMed  CAS  Google Scholar 

  • Novitsky, J. A., and Morita, R. Y., 1976, Morphological characterization of small cells resulting from nutrient starvation in a psychrophilic marine vibrio, Appl. Environ. Microbiol. 32: 619–622.

    Google Scholar 

  • Novitsky, J. A., and Morita, R. Y., 1977, Survival of a psychrophilic marine vibrio under long-term nutrient starvation, Appl. Environ. Microbiol. 33: 635–641.

    PubMed  CAS  Google Scholar 

  • Novitsky, J. A., and Morita, R. Y, 1978, Starvation induced barotolerance as a survival mechanism of a psychrophilic marine vibrio in the waters of the Antarctic Convergence, Mar. Biol. 49: 7–10.

    Article  Google Scholar 

  • Oppenheimer, C. H., 1952, The membrane filter in the marine environment, J. Bacteriol. 64: 783–786.

    PubMed  CAS  Google Scholar 

  • Parkes, R. J., Taylor, J., and Jorck-Ramberg, D., 1984, Demonstration using Desulfovibrio sp. of two pools of acetate with different biological availabilities in marine pore water, Mar. Biol. 83: 271–276.

    Article  CAS  Google Scholar 

  • Poindexter, J. S., 1981, Oligotrophy: Fast and famine existence, Adv. Microb. Ecol. 5: 63–90.

    Article  CAS  Google Scholar 

  • Reeve, C. A., Amy, P., and Matin, A., 1984, Role of protein synthesis in the survival of carbonstarved Escherichia coli, J. Bacteriol. 160: 1041–1046.

    PubMed  CAS  Google Scholar 

  • Reiser, R., and Tasch, P., 1960, Investigation of the viability of osmophile bacteria of great geological age, Trans. Kans. Acad. Sci. 63: 31–34.

    Article  PubMed  CAS  Google Scholar 

  • Roszak, D. B., and Colwell, R. R., 1987, Survival strategies of bacteria in the natural environment, Microbiol. Rev. 51: 365–379.

    PubMed  CAS  Google Scholar 

  • Sansome, E.J, 1988, Depth distribution of short chain organic acid turnover in Cape Lookout Bight sediments, Geochim. Cosmochim. Acta 50: 99–105.

    Article  Google Scholar 

  • Söderström, B. A., 1979, Seasonal fluctuations of active fungal biomass in horizons of a podsolised pine-forest soil, Soil Biol. Biochem. 11: 149–154.

    Article  Google Scholar 

  • Sowden, F. J., Griffith, S. M., and Schnitzer, M., 1976, The distribution of nitrogen in some highly organic tropical volcanic soils, Soil Biol. Biochem. 8: 55–60.

    Article  CAS  Google Scholar 

  • Stotzky, G., 1986, Influence of soil mineral colloids on metabolic processes, adhesion, and ecology of microbes and viruses, SSSA Spec. Publ. No. 17, pp. 305-428.

    Google Scholar 

  • Tabor, P. S., Ohwada, K., and Colwell, R. R., 1981, Filterable marine bacteria found in the deep sea: Distribution, taxonomy and response to starvation, Microb. Ecol. 7: 67–83.

    Article  Google Scholar 

  • Tenore, K. R., Cammen, L., Findlay, S. E. G., and Phillips, N., 1982, Perspective of research on detritus: Do factors controlling availability of detritus to macroconsumers depend on its source? J. Mar. Res. 40: 473–490.

    CAS  Google Scholar 

  • Torrella, F., and Morita, R. Y, 1981, Microcultural study of bacteria size changes and microcolony and ultramicrocolony formation by heterotrophic bacteria in seawater, Appl. Environ. Microbiol. 41: 518–527.

    PubMed  CAS  Google Scholar 

  • Torrella, F., and Morita, R. Y, 1982, Starvation induced morphological changes, motility, and chemotaxis patterns in a psychrophilic marine vibrio, Deuxieme Colloque de Microbiologie marine, Publ. de Centre Nat. pour l’Exploitation des Oceans 13: 45–60.

    Google Scholar 

  • Upton, A. C., and Nedwell, D. B., 1989, Nutritional flexibility of oligotrophic and copiotrophic antarctic bacteria with respect to organic substrates, FEMS Microbiol. Ecol. 62: 1–6.

    Article  CAS  Google Scholar 

  • Van der Kooij, D. A., Visser, A., and Hijnen, W. A. M., 1980, Growth of Aeromonas hydrophilia at low concentrations of substrates added to tap water, Appl. Environ. Microbiol. 39: 1198–1204.

    PubMed  Google Scholar 

  • Van der Kooij, D. A., Oranje, J. P., and Hijnen, W. A. M., 1982, growth of Pseudomonas in tap water in relation to utilization of substrates at concentrations of a few micrograms per liter, Appl. Environ. Microbiol. 44: 1086–1095.

    PubMed  Google Scholar 

  • West, P M., and Lochhead, A. G., 1950, The nutritional requirements of soil bacteria—A basis for determining the bacterial soil equilibrium of soils, Soil Sci. 50: 409–420.

    Article  Google Scholar 

  • Williams, P. M., 1971, The distribution and cycling of organic matter in the ocean, in: Organic Compounds in the Aquatic Environment (S. Faust and J. Hunter, eds.), Dekker, New York, pp. 45–60.

    Google Scholar 

  • Williams, P M., Oeschger, H., and Kinney, P., 1969, Natural radiocarbon activity in the northeast Pacific Ocean, Nature 224: 256–258.

    Article  CAS  Google Scholar 

  • Williams, S. X., 1985, Oligotrophy in soil: Fact or fiction? in: Bacteria in the Natural Environments: The Effect of Nutrient Conditions (M. Fletcher and G. Floodgate, eds.), Academic Press, New York, pp. 81–110.

    Google Scholar 

  • Zimmerman, R., and Meyer-Reil, L.-A., 1974, A new method for fluorescence staining of bacterial populations on membrane filters, Kiel. Meeresforsch. 30: 24–27.

    Google Scholar 

  • Zimmermann, R., Iturriaga, R., and Becker-Birck, J., 1978, Simultaneous determination of the total number of aquatic bacteria and the number thereof involved in respiration, Appl. Environ. Microbiol. 36: 926–935.

    PubMed  CAS  Google Scholar 

  • ZoBell, C. E., and Grant, C. W, 1942, Bacterial activity in dilute nutrient solutions, Science 96: 189.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media New York

About this chapter

Cite this chapter

Morita, R.Y. (1993). Bioavailability of Energy and the Starvation State. In: Kjelleberg, S. (eds) Starvation in Bacteria. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-2439-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-2439-1_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-44430-2

  • Online ISBN: 978-1-4899-2439-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics