Skip to main content

The Significance of DNA Methylation in Cellular Aging

  • Chapter
Molecular Biology of Aging

Part of the book series: Basic Life Sciences ((BLSC,volume 35))

Abstract

Primary cultures of diploid fibroblasts give rise to populations which have limited growth potential. In the case of human cells, their in vitro life span is usually in the range of 50–70 population doublings (Hayflick, 1965; 1977; Holliday et al., 1977). In spite of strong selective pressure when growth slows down and finally ceases, permanent lines do not emerge from these populations. Diploid rodent cultures have a much shorter in vitro life span, and permanent lines, exemplified by the mouse 3T3 strain, often take over the culture (Todaro and Green, 1963).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Arlett, C.F., and Harcourt, S.A., 1983. Variation in response to mutagens amongst normal and repair defective human cells, in: “Induced Mutagenesis”, p. 249, C.W. Lawrence, ed., Plenum Press, New York.

    Chapter  Google Scholar 

  • Barski, G. and Cassingena, R., 1963, Malignant transformation in vitro of cells from C57BL mouse normal pulmonary tissue, J. Natl. Cancer Inst., 30:865.

    PubMed  Google Scholar 

  • Cattanach, B.M., 1974, Position effect variegation in the mouse, Genet. Res. 23:291.

    Article  PubMed  Google Scholar 

  • Clough, D.W., Kunkel, L.M. and Davidson, R.L. 1982, 5-Azacytidineinduced reactivation of a Herpes simplex thymidine kinase gene, Science, 216-70.

    Google Scholar 

  • Cole, J., Arlett, C.F., Green, M.H.L., Lowe, J. and Muriel, W., 1983, A comparison of the agar cloning and microtitration techniques for assaying cell survival and mutation frequency in L5178Y mouse lymphoma cells. Mutat. res., 111:371.

    Article  PubMed  Google Scholar 

  • Creusot, F., Acs, G., and Christman, J.K. 1982, Inhibition of DNA methyltransferase and induction of Friend erythroleukaemia cell differentiation by 5-azacytidine and 5-aza-2′-deoxycytidine, J. Biol. Chem., 257: 2041.

    PubMed  Google Scholar 

  • Curtis, H.J., 1966, “Biological Mechanisms of Aging”, Springfield, Illinois.

    Google Scholar 

  • Cutler, R.G., 1982a, Longevity is determined by specific genes: testing the hypothesis, in “Testing the Theories of Aging”, p. 25, R.C. Adelman and G.S. Roth, eds. CRC Press, Boca Raton, Florida.

    Google Scholar 

  • Cutler, R.G. 1982b, The dysdifferentiative hypothesis of mammalian aging and longevity, in “The Aging Brain: Cellular and Molecular Mechanisms of Aging in the neurons system”, p. 1, E. Giacobini, G. Filogamo, G. Giacobini and A. Vernadakis, eds., Raven Press, New York.

    Google Scholar 

  • DeMars, E., 1974, Resistance of cultured human fibroblasts and other cells to purine and pyrimidine analogues in relation to mutagenesis detection, Mutat. Res., 24: 33.

    Google Scholar 

  • Doerfler, W., 1981, DNA methylation-a regulatory signal in eukaryotic gene expression, J. Gen. Virol., 57:1.

    Article  PubMed  Google Scholar 

  • Doerfler, W., 1983, DNA methylation and gene activity. Ann. Rev. Biochem., 52:93.

    Article  PubMed  Google Scholar 

  • Flatau, E., Gonzales, F.A., Michalowsky, L.A. and Jones, P.A., 1984. DNA methylation in 5-aza-2′-deoxycytidine resistant variants of C3H 10T1/2 C18 cells, Mol. Cell. Biol., 4:2098.

    PubMed  Google Scholar 

  • Gartler, S.M. and Riggs, A.D. 1983, Mammalian X-chromosome inactivation, Ann. Rev. Genet., 17:155.

    Article  PubMed  Google Scholar 

  • Gasson, J.C., Ryden, T. and Bourgeois, S., 1983, Role of de novo DNA methylation in the glucocorticoid resistance of a T-lymphoid cell line, Nature, 302-621.

    Google Scholar 

  • Graves, J.A.M., 1982, 5-Azacytidine-induced re-expression of alleles on the inactive X chromosome in a hybrid mouse cell line, Exptl. Cell Res., 141:99.

    Article  PubMed  Google Scholar 

  • Harris, M., 1982, Induction of thymidine kinase in enzyme-deficient Chinese hamster cells, Cell. 29:483.

    Article  PubMed  Google Scholar 

  • Hayflick, L., 1965, The limited in vitro lifetime of human diploid cell strains, Exptl. Cell Res., 37:614.

    Article  PubMed  Google Scholar 

  • Hayflick, L., 1971, The Cellular basis of human aging, in: “Handbook of the Biology of Aging,” p. 159, C. Finch and L. Hayflick, eds., Van Norstrand, Reinhold, New York.

    Google Scholar 

  • Holliday, R., 1979, A new theory of carcinogenesis, Brit. J. Cancer, 40:513.

    Article  PubMed  Google Scholar 

  • Holliday, R., 1984, The unsolved problem of cellular ageing, Monogr. Devel. Biol., 17:60.

    Google Scholar 

  • Holliday, R., 1984, The biological significance of meiosis, in: “Controlling Events in Meiosis”, C.W. Evans, ed., S.E.B. Symp. 38, Cambridge University Press (in press).

    Google Scholar 

  • Holliday, R., Huschtscha, L.I., Tarrant, G.M. and Kirkwood, T.B.L., 1977, Testing the commitment theory of cellular ageing, Science, 198:366.

    Article  PubMed  Google Scholar 

  • Holliday, R., and Kirkwood, T.B.L., 1981, Predictions of the somatic mutation and mortalization theories of cellular ageing are contrary to experimental observations, J. Theoret. Biol., 93:627.

    Article  Google Scholar 

  • Holliday, R., and Pugh, J. E., 1975, DNA modification mechanism and gene activity during development, Science, 187:226.

    Article  PubMed  Google Scholar 

  • Huschtscha, L.I., and Holliday, R., 1983, The limited and unlimited growth of SV40 transformed cells from human diploid MRC-5 fibroblasts, J. Cell Sci., 63:77.

    PubMed  Google Scholar 

  • Jahner, D., Stuhlman, H., Stewart, C.H., Haubers, K., Lohler, J., Simon, I., and Jaenisch, R., 1982, De novo methylation and expression of retroviral genomes during mouse embryogenesis, Nature (Lond.), 298:623.

    Article  Google Scholar 

  • Jones, P.A. and Taylor, S.M., 1981, Hemimethylated duplex DNAs prepared from 5-azacytidine-treated cells, Nucleic Acids Res., 9:2933.

    Article  PubMed  Google Scholar 

  • Jones, P.A. and Taylor, S.M., 1982, Cellular differentiation, cytidine analogues and DNA methylation, Cell. 20:85.

    Article  Google Scholar 

  • Kennedy, A.R., Fox, M., Murphy, G., and Little, J.B., 1981, Relationship between X-ray exposure and malignant transformation in C3H 10T1/2 cells, Proc. Nat. Acad. Sci. U.S.A., 77:7262.

    Article  Google Scholar 

  • Kirkwood, T.B.L., 1980, Error propagation in intracellular information transfer, J. Theoret. Biol., 82:363.

    Article  Google Scholar 

  • Kirkwood, T.B.L., Rosenberger, R.F., and Holliday, R., 1984, Stability of the cellular translation process, Int. Rev. Cytol., 92:93.

    Article  PubMed  Google Scholar 

  • Land, H., Paroda, L.F., and Weinberg, R.A. 1983, Tumorigenic conversion of primary embryo fibroblasts requires at least two co-operating oncogenes, Nature (Lond.), 304:596.

    Article  Google Scholar 

  • Lindop, P.J., and Rotblat, J., 1961, Shortening of life and causes of death in mice exposed to a single whole body dose of radiation, Nature (Lond.), 189:645.

    Article  Google Scholar 

  • Mahondas, T., Sparkes, R.S. and Shapiro, L.J., 1981, Reactivation of an inactive human X-chromosome: evidence for X-inactivation by DNA methylation, Science, 211:393.

    Article  Google Scholar 

  • Maynard Smith, J., 1959, A theory of ageing, Nature (Lond.), 184:959.

    Article  Google Scholar 

  • Maynard Smith, J., 1962, The causes of ageing. Proc. Roy. Soc. B., 157:115.

    Article  Google Scholar 

  • Mays-Hoopes, L.L., Brown, A. and Huang, R.C.C., 1983, Methylation and re-arrangement of mouse intracisternal A particle genes during development, aging and myeloma, Mol. Cell. Biol., 3:1371.

    PubMed  Google Scholar 

  • Neary, G.J., 1960, Ageing and radiation. Nature (Lond.), 187:10.

    Article  Google Scholar 

  • Newbold, R.E. and Overell, R.W., 1983, Fibroblast immortality is a prerequisite for transformation by EJc-Ha-ras oncogene, Nature (Lond.), 304:64

    Article  Google Scholar 

  • Ono, T. and Cutler, R.C., 1978, Age-dependent relaxation of gene repression: increase of endogenons murine leukemia virus-related and globin-related RNA in brain and livers of mice, Proc. Nat. Acad. Sci. U.S.A., 75:4431.

    Article  Google Scholar 

  • Orgel, L.E., 1963, The maintenance of the accuracy of protein synthesis and its relevance to ageing. Proc. Nat. Acad. Sci. U.S.A., 49:517.

    Article  Google Scholar 

  • Orgel, L.E., 1970, The maintenance of the accuracy of protein synthesis and its relevance to ageing; a correction. Proc. Nat. Acad. Sci. U.S.A., 67:1476.

    Article  Google Scholar 

  • Orgel, L.E., 1973, Ageing of clones of mammalian cells, Nature (Lond.), 243-441.

    Google Scholar 

  • Riggs, A.D., 1975, X-inactivation, differentiation and DNA methylation. Cytogenet. and Cell Genet., 14:9.

    Article  Google Scholar 

  • Riggs, A.D. and Jones, P.A., 1983, 5-methyl cytosine, gene regulation and cancer, Adv. Cancer Res., 40, 1.

    Article  PubMed  Google Scholar 

  • Sacher, G.A., 1978, Evolution of longevity and survival characteristics in mammals, in “Genetics of ageing,” p. 151, E.L. Schneider, ed., Plenum Press, New York.

    Chapter  Google Scholar 

  • Schmookler-Reis, R.J. and Goldstein, S., 1982, Variability of DNA methylation patterns during serial passage of human diploid fibroblasts, Proc. Nat. Acad. Sci, U.S.A., 79:3949.

    Article  Google Scholar 

  • Stewart, C.L., Stuhlmann, H., Jahner, D. and Jaenisch, R., 1982, De novo methylation, expression and infectivity of retroviral genomes introduced into embryonal carcinoma cells, Proc. Nat. Acad. Sci., U.S.A., 79:4098.

    Article  Google Scholar 

  • Szilard, L., 1959, On the nature of the ageing process, Proc. Nat. Acad. Sci, U.S.A., 45-30.

    Google Scholar 

  • Taylor, S.M. and Jones, P.A., 1982, Mechanism of action of eukaryotic DNA methyl transferase: use of 5-azacytidine containing DNA, J. Mol. Biol., 162:679.

    Article  PubMed  Google Scholar 

  • Todaro, G.H. and Green, H., 1963, Quantitative studies of the growth of mouse embryo cells in culture and their development into established lines, J. Cell Biol., 17:299.

    Article  PubMed  Google Scholar 

  • Wilson, V.L. and Jones, P.A., 1983a, An inhibition of DNA methylation by chemical in vitro carcinogens, Cell. 32:239.

    Article  PubMed  Google Scholar 

  • Wilson, V.L. and Jones, P.A., 1983b, DNA methylation decreases in aging but not in immortal cells, Science, 220:1055.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Springer Science+Business Media New York

About this chapter

Cite this chapter

Holliday, R. (1985). The Significance of DNA Methylation in Cellular Aging. In: Woodhead, A.D., Blackett, A.D., Hollaender, A. (eds) Molecular Biology of Aging. Basic Life Sciences, vol 35. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-2218-2_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-2218-2_17

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-2220-5

  • Online ISBN: 978-1-4899-2218-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics