Skip to main content

Corticotropin Releasing Factor Receptors: Characterization and Actions in the Anterior Pituitary Gland

  • Chapter
Mechanisms of Physical and Emotional Stress

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 245))

Abstract

Corticotropin releasing factor (CRF), which was isolated from hypothalamic extracts and sequenced in 1981, has been shown to participate in visceral and behavioral responses to stress, as well as the control of ACTH secretion (1,2). The initial event in the action of CRF in the pituitary gland is its binding to specific plasma membrane receptors, which trigger the formation of intracellular messengers responsible for the activation of ACTH release. Such receptors were first identified in rat pituitary membranes by binding studies with radioiodinated CRF (3), and were subsequently analyzed by radioassays in membranes (4) and by autoradiographic (5–8) and cytochemical techniques using biotinylated or fluorescein-conjugated CRF analogues (9,10). The use of autoradiography permitted the identification and characterization of CRF receptors in the central and peripheral nervous systems, and has greatly aided our understanding of the physiological actions of CRF in these tissues. The most common ligand used for CRF receptor studies is the radioiodinated ovine CRF derivative, Tyr-oCRF; similar receptor properties have been described using radioiodinated [NLeu21, Tyr32]oCRF (5). Analogues of rat/human CRF have given tracers with reduced biological action and lower binding activity due to peptide damage during the iodination procedure. Since ovine and human CRF bind to the CRF receptor in different species with equal affinities, oCRF can be used for studies in both rat and primates.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Vale, W., C. Rivier, M. R. Brown, J. Spiess, G. Koob, L. Swanson, L. Bilizikjian, F. Bloom, and J. Rivier, 1983, Chemical and biological characteristization of corticotropin releasing factor, Rec. Progr. Horm. Res., 39:245–270.

    PubMed  CAS  Google Scholar 

  2. Rivier, C. L., and P. M. Plotsky, 1986, Mediation by corticotropin releasing factor (CRF) of adenohypophysial hormone secretion, Ann. Rev. Physiol., 48:475–494.

    Article  CAS  Google Scholar 

  3. Wynn, P. C., Aguilera, G., Morell, J. and Catt, K. J., 1983, Properties and regulation of high-affinity pituitary receptors for corticotropin-releasing factor, Biochem. Biophys. Res. Commun., 110-602-609.

    Google Scholar 

  4. Holmes, M. C., Antoni, F. A., Szentendrei, T., 1984, Pituitary receptors for corticotropin-releasing factor: no effect of vasopressin on binding or activation of adenylate cyclase, Neuroendocrinology, 39:162–169.

    Article  PubMed  CAS  Google Scholar 

  5. De Souza, E. B., and M. J. Kuhar, 1986, Corticotropin-releasing factor receptors in the pituitary gland and central nervous system: Methods and overview, Methods in Enzymology, 124:560–590.

    Article  PubMed  Google Scholar 

  6. Wynn, P. C., R. L. Hauger, M. C. Holmes, M. A. Millan, K. J. Catt, and G. Aguilera, Brain and pituitary receptors for corticotropin releasing factor: Localization and differential regulation after adrenalectomy, 1984, Peptides, 5:1077–1084.

    Google Scholar 

  7. Millan, M. A., Abou Samra, A-B, Wynn, P. C., Catt, K. J., and Aguilera, G., 1987, Receptors and actions of corticotropin releasing hormone in the primate pituitary gland, J. Clin. Endocrinol. Metab., 64:1036–1041.

    Article  PubMed  CAS  Google Scholar 

  8. Leroux, P., Pelletier, G., 1984, Radioautographic study of binding and internalization of corticotropin-releasing factor by rat anterior pituitary corticotrophs, Endocrinology, 114:14–21.

    Article  PubMed  CAS  Google Scholar 

  9. Childs, G. V., Morell, J. L., Niendorf, A., Aguilera, G., 1986, Cytochemical studies of CRH receptors in anterior lobe corticotropes: Binding, glucocorticoid regulation and endocytosis of [Biotinyl-Ser]CRH, Endocrinology, 119:2129–2142.

    Article  PubMed  CAS  Google Scholar 

  10. Schwartz, J., Billestrup, N., Perrin, M., Rivier, J., Vale, W. W., 1986, Identification of corticotropin-releasing factor (CRF) target cells and effects of dexamethasone on binding in anterior pituitary using a fluorescent analog of CRF, Endocrinology, 119:2376–2382.

    Article  PubMed  CAS  Google Scholar 

  11. Gillies, G. E., Linton, E. A., Lowry, P. J., 1982, Corticotropin-releasing activity of the new CRF is potentiated several times by vasopressih, Nature, 299:355–357.

    Article  PubMed  CAS  Google Scholar 

  12. Aguilera, G., Harwood, J. P., Wilson, J. X., Morell, J., Brown, J. H., and Catt, K. J., 1983, Mechanisms of action of corticotropin release in rat pituitary cells, J. Biol. Chem. 258:8039–8044.

    PubMed  CAS  Google Scholar 

  13. Aguilera, A., Wynn, P. C., Harwood, J. P., Hauger, R. L., Millan, M. A., Grewe, C., and Catt, K. J., 1986, Receptor-mediated actions of corticotropin-releasing factor in pituitary gland and nervous system, Neuroendocrinology, 43:79–88.

    Article  PubMed  CAS  Google Scholar 

  14. Perrin, M. H., Haas, Y., Rivier, J., and Vale, W. W., 1986, Corticotropin-releasing factor binding to the anterior pituitary receptor is modulated by divalent cations and guanyl nucleotides, Endocrinology, 118:1171–1179.

    Article  PubMed  CAS  Google Scholar 

  15. Wynn, P. C., Harwood, J. P., Catt, K. J., and Aguilera, G., 1985, Regulation of corticotropin-releasing factor (CRF) receptors with the rat pituitary gland: Effect of adrenalectomy on CRF receptors and corticotroph responses, Endocrinology, 116:1653–1659.

    Article  PubMed  CAS  Google Scholar 

  16. Catt, K. J., Harwood, J. P., Aguilera, G., and Dufau, M. L., 1979, Hormonal regulation of peptide receptors and target cell responses, Nature, 280-109-116.

    Google Scholar 

  17. Holmes, M. C., Antoni, F. A., Catt, K. J., and Aguilera, G., 1985, Predominant release of vasopressin vs. corticotropin-releasing factor from the isolated median eminence after adrenalectomy, Neuroendocrinology, 43:245–251.

    Article  Google Scholar 

  18. Plotsky, P. M., Sawchenko, P. E., 1987, Hypophysial-portal plasma levels, median eminence content, and immunohistochemical staining of corticotropin-releasing factor, arginine vasopressin, and oxytocin after pharmacological adrenalectomy, Endocrinology, 120:1361–1369.

    Article  PubMed  CAS  Google Scholar 

  19. Oliver, C., Conte-Devolx, B., Rey, M., Boudouresque, F., Giraud, P., Castanas, E., and Porter, J. C., 1983, Immunoreactive 41-CRF in hypophysial portal blood of intact and adrenalectomized rats. Acta Endocrinol. 103:98 abstract.

    Google Scholar 

  20. Leroux, P., Pelletier, G., 1984, Radioautographic study of binding and internalization of corticotropin-releasing factor by rat anterior pituitary corticotrophs. Endocrinology, 114:14–21.

    Article  PubMed  CAS  Google Scholar 

  21. Wynn, P.C., Harwood, J.P., Catt, K.J., Aguilera, G., 1988, Corticotropin releasing factor (CRF) induces desensitization of the rat pituitary CRF receptor-adenylate cyclase complex, Endocrinology, Vol. 122, in press.

    Google Scholar 

  22. Hoffman, A.R., Ceda, G., Reisine, T.D., 1985, Corticotropin-releasing factor desensitization of adrenocorticotropic hormone release is augmented by arginine vasopressin, J. Neuroscience, 5:234–242.

    CAS  Google Scholar 

  23. Kiss, J. Z., Mezey, E., Skirboll, L., 1984, Corticotropin-releasing factor-immunoreactive neurons of the paraventricular nucleus become vasopressin positive after adrenalectomy. Proc. Natl. Acad. Sci. USA, 81:1854–1858.

    Article  PubMed  CAS  Google Scholar 

  24. Koenig, J. I., Meltzer, H. Y., Devane, G. D., and Gudelsky, G. A., 1986, The concentration of arginine vasopressin in pituitary stalk plasma of the rat after adrenalectomy or morphine, Endocrinology, 118:2534–2539.

    Article  PubMed  CAS  Google Scholar 

  25. Holmes, M. C., Catt, K. J., Aguilera, G., 1987, Involvement of vasopressin in the down-regulation of pituitary corticotropin-releasing factor receptors following adrenalectomy, Endocrinology, Vol. 121, in press.

    Google Scholar 

  26. Hauger, R. L., Millan, M. A., Catt, K. J., and Aguilera, G., 1987, Differential regulation of brain and pituitary corticotropin-releasing factor receptors by corticosterone, Endocrinology, 120:1527–1533.

    Article  PubMed  CAS  Google Scholar 

  27. Abou-Samra, A-B, Catt, K. J., and Aguilera, G., 1986, Involvement of protein kinase C in the regulation of adrenocorticotropin release from rat anterior pituitary cells, Endocrinology, 118:212–217.

    Article  PubMed  CAS  Google Scholar 

  28. Eberwine, J. H., Roberts, J. L., 1984, Glucocorticoid regulation of proopiomelanocortin gene transcription in the rat pituitary, J. Biol. Chem., 259:2166–2170.

    PubMed  CAS  Google Scholar 

  29. Knepel, W., Nutto, D., Meyer, D. K., Vlaskovska, M. 1984, Vasopressin release from rat medial basal hypothalamus after adrenalectomy or lesions of the paraventricular nuclei. Neurosci. Lett., 48:321–326.

    Article  PubMed  CAS  Google Scholar 

  30. Suda, T., Tomori, N., Tozawa, F., Mori, T., Demura, H., and Shizuma, K., 1983, Effects of bilateral adrenalectomy on immunoreactive corticotropin-releasing factor in the rat median eminence and intermediate-posterior pituitary, Endocrinology, 113:1182–1184.

    Article  PubMed  CAS  Google Scholar 

  31. Giguere, V., Labrie, F., Cote, J., Coy, D. H., Sueiras-Diaz, J., Schally, A. V., 1982, Stimulation of cyclic AMP accumulation and corticotropin release by synthetic ovine corticotropin-releasing factor in rat anterior pituitary cells: Site of glucocorticoid action, Proc. Natn. Acad. Sci. USA, 79:3466–3469.

    Article  CAS  Google Scholar 

  32. Hook, V. Y. H., Heisler, S., and Axelrod, J., 1982, Corticotropin-releasing factor stimulates phospholipid methylation and corticotropin secretion in mouse pituitary tumor cells, Proc. Natl. Acad. Sci. USA, 79:6220–6223.

    Article  PubMed  CAS  Google Scholar 

  33. Heisler, S., Hook, V. Y. H., and Axelrod, J., 1983, Corticotropin releasing factor stimulation of protein carboxylmethylation in mouse pituitary tumor cells, Biochem. Pharmacol., 32:1295–1299.

    Article  PubMed  CAS  Google Scholar 

  34. Hirata, F., and Axelrod, J., 1980, Phospholipid methylation and biological signal transmission, Science, 209:1082–1084.

    Article  PubMed  CAS  Google Scholar 

  35. Giguere, V., Lefevre, G., and Labrie, F., 1982, Site of calcium requirement for stimulation of ACTH release in rat anterior pituitary cells in culture by synthetic ovine corticotropin-releasing factor, 1982, Life Sci., 31:3057–3062.

    Article  PubMed  CAS  Google Scholar 

  36. Murakami, K., Hashimoto, K., and Ota, Z., 1985, The effects of nifedipine on CRF-41 and AUP-induced ACTH released in vitro, 1985, Acta Endocrinol. (Copenh), 109:32–37.

    CAS  Google Scholar 

  37. Abou-Samra, A.-B., Catt, K. J., and Aguilera, G., 1987, Calcium-dependent control of corticotropin release in rat anterior pituitary cell cultures, Endocrinology, 121:965–971.

    Article  PubMed  CAS  Google Scholar 

  38. Piascik, M. T., Bibich, M., Rush, M. E., 1983, Calmodulin stimulation and calcium regulation of smooth muscle adenylate cyclase activity, J. Biol. Chem., 258:10913–10918.

    PubMed  CAS  Google Scholar 

  39. Resink, T. J., Stucki, S., Grigorian, G. Y., Zschauer, A., Buhler, F. R., 1986, Biphasic Ca2+ response of adenylate cyclase. The role of calmodulin in its activation by Ca2+ ions, Eur. J. Biochem., 154:451–459.

    Article  PubMed  CAS  Google Scholar 

  40. Rasmussen, H., and Barrett, P. Q., Calcium messenger system: An integrated view, Physiol. Rev. 64:938–940.

    Google Scholar 

  41. Luini, G., Lewis, D., Guild, S., Corda, D., and Axelrod, J., 1985, Hormone secretagogues increase cytosolic calcium by increasing cAMP in corticotropin-secreting cells, Proc. Natl. Acad. Sci. USA, 82:8034–8038.

    Article  PubMed  CAS  Google Scholar 

  42. Abou-Samra, A.-B., Catt, K. J., Aguilera, G., 1986, Role of arachidonic acid in the regulation of adrenocorticotropin release from rat anterior pituitary cell cultures, Endocrinology, 119:1427–1431.

    Article  PubMed  CAS  Google Scholar 

  43. Giguere, V., and Labrie, F., Vasopressin potentiates cyclic AMP accumulation and ACTH release induced by corticotropin-releasing factor (CRF) in rat anterior pituitary cells in culture, Endocrinology, 111:1752–1754.

    Google Scholar 

  44. Abou-Samra, A.-B., Harwood, J., Manganiello, V., Catt, K. J., and Aguilera, G., 1986, Phorbol 12-myristate 13-acetate and vasopressin potentiate the effect of corticotropin-releasing factor on cyclic AMP production in rat anterior pituitary cells, J. Biol. Chem., 262:1129–1136.

    Google Scholar 

  45. Weishaar, R. E., Cain, M. H., and Bristol, J. A., 1985, A new generation of phosphodiesterase inhibitors: Multiple molecular forms of phosphodiesterase and the potential for drug selectivity. J. Med. Chem., 28:537–545.

    Article  PubMed  CAS  Google Scholar 

  46. Nakamura, T., and Ui, M., 1985, Simultaneous inhibition of inositol phospholipid breakdown, arachidonic acid release, and histamine secretion in mast cells by islet-activating protein, pertussis toxin, J. Biol. Chem., 260:3584–3593.

    PubMed  CAS  Google Scholar 

  47. Higashida, H., Streaty, R. A., Klee, W., Nirenberg, M., 1986, Brandykinin-activated transmembrane signals are coupled via No or Ni to production of inositol 1,4,5-trisphosphate, a second messenger in NG108-15 neuroblastomg-glioma hybrid cells, Proc. Natl. Acad. Sci. USA, 83:942–946.

    Article  PubMed  CAS  Google Scholar 

  48. Lad, P. M., Olson, C. V., Grewal, I. S., and Scott, S. J., 1985, A pertussis toxin-sensitive GTP-binding protein in human neutrophil regulates multiple receptors, calcium mobilization, and lectin-induced capping, Proc. Natl. Acad. Sci. USA, 82:8643–8647.

    Article  PubMed  CAS  Google Scholar 

  49. Pfaffinger, P. J., Martin, J. M., Hunter, D. D., Mathanson, N. M., and Hillye, B., 1985, GTP-binding proteins couple cardiac muscarinic receptors to a K channel, Nature, 317:536–538.

    Article  PubMed  CAS  Google Scholar 

  50. Holziv, G. G., Rane, S. G., Dunlap, K., 1986, GTP-binding proteins mediate transmitter inhibition of voltage-dependent calcium channels, Nature, 319:670–672.

    Article  Google Scholar 

  51. Litosch, I., Wallis, C., and Fain, J. N., 5-hydroxytryptamine stimulates inositol phosphate production in a cell-free system from blowfly salivary gland, J. Biol. Chem., 260(9) 5464–5471.

    Google Scholar 

  52. Lynch, C. J., Prpic, V., Blackmore, P. F., Exton, J. H., Effect of islet-activating pertussis toxin on the binding characteristics of Ca-mobilizing hormones and on agonist activation of phosphorylase in hepatocytes, Mol. Pharmacol., 29:196–203.

    Google Scholar 

  53. Uhing, R., Prpec, V., Juang, H., Exton, J., 1986, Hormone stimulated polyphosphoinositide breakdown in rat liver plasma membranes, J. Biol. Chem. 261:2140–2146.

    PubMed  CAS  Google Scholar 

  54. Katada, T., Gilman, A. G., Watanabe, Y., Banor, S., Jakobs, K. H., 1985, Protein kinase C phosphorylates the inhibitory guanine-nucleotide-binding regulatory component and apparently suppresses its function in hormonal inhibition of adenylate cyclase, Eur. J. Biochem., 151:431–436.

    Article  PubMed  CAS  Google Scholar 

  55. Bell, J. D., Buxton, I. L. O, Brunton, L. L., 1985, Enhancement of adenylate cyclase activity in S49 lymphoma cells by phorbol esters, J. Biol. Chem., 260:2625–2628.

    PubMed  CAS  Google Scholar 

  56. Yoshimasa, T., Bouvier, M., Benovic, J. L., Amlaiky, N., Lefkowitz, R. J., Caron, M. G., 1986, Catalytic unit of adenylate cyclase: Purification and phosphorylation by cyclic AMP-dependent protein kinase and protein kinase C., Clin. Res., 34:689A.

    Google Scholar 

  57. Benovic, J. L., Strasser, R. H., Mayor, F. Jr., Caron, M. G., Lefkowitz, R. J., 1986, β-adrenergic receptor kinase: A novel cAMP-independent protein kinase which phosphorylates and desensitizes and agonist-occupied form of the receptor, Clin. Res., 34:642A.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer Science+Business Media New York

About this chapter

Cite this chapter

Aguilera, G., Samra, AB.A., Harwood, J.P., Catt, K.J. (1988). Corticotropin Releasing Factor Receptors: Characterization and Actions in the Anterior Pituitary Gland. In: Chrousos, G.P., Loriaux, D.L., Gold, P.W. (eds) Mechanisms of Physical and Emotional Stress. Advances in Experimental Medicine and Biology, vol 245. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-2064-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-2064-5_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-2066-9

  • Online ISBN: 978-1-4899-2064-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics