Skip to main content

Abstract

There is now a rich history to those experiments studying the stimulation of biological systems using extremely weak electrical and magnetic fields. In the following, we review this work, with particular emphasis on the experimental evidence in support of ion cyclotron resonance as the interaction mechanism underlying the observed effects. The number of compartmentalized groups studying electromagnetic effects in tissue is growing rapidly, and it is wise to limit the area we shall cover. Thus, we restrict ourselves solely to those observations involving time-varying fields, primarily in the ELF range. We will begin with a short review of ion cyclotron resonance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G. Dresselhaus, A.F. Kip and C. Kittel, Observation of cyclotron resonance in germanium crystals, Phys. Rev. 92:827 (1953).

    Article  CAS  Google Scholar 

  2. M.Ya. Azbel and E.A. Kaner, Cyclotron resonance in metals, J. Phys. Chem. Solids 6:113 (1958).

    Article  CAS  Google Scholar 

  3. T.H. Stix and R.W. Palladino, Experiments in ion cyclotron resonance, Phys. Fluids 1:446 (1958).

    Article  CAS  Google Scholar 

  4. D.F. Blackman, S.G. Benane, J.R. Rabinowitz, D.E. House and W.T. Joines, A role for the magnetic field in the radiation-induced efflux of calcium ions from brain tissue in vitro, Bioelectroraagnetics 3:327 (1985).

    Google Scholar 

  5. A.R. Liboff, Cell-field interactions at extremely low frequencies, Bull. Am. Phys. Soc. 30:548a (1985).

    Google Scholar 

  6. A.R. Liboff, Cyclotron resonance in membrane transport, in “Interactions Between Electromagnetic Field and Cells,” A. Chiabrera, C. Nicolini and H.P. Schwan, Eds., London: Plenum Press (1985).

    Google Scholar 

  7. B.R. McLeod and A.R. Liboff, Dynamic characteristics of membrane ions in multifield configurations of low-frequency electromagnetic radiation, Bioelectromagnetics 7:177 (1986).

    Article  PubMed  CAS  Google Scholar 

  8. A.R. Liboff and b.R. McLeod, Kinetics of channelized membrane ions in magnetic fields, in review.

    Google Scholar 

  9. A. Chiabrera, B. Bianco, F. Caratozzolo, G. Giannetti, M. Grattarola and R. Viviani, Electric and magnetic field effects on liquid binding to the cell membrane, in “Interaction Between Electromagnetic Fields and Cells,” A Chiabrera, C. Nicolini and H.P. Schwan, Eds., London: Plenum Press (1985).

    Google Scholar 

  10. L.S. Lavine, I. Lustrin, M.H. Shamos, R.A. Rinaldi and A.R. Liboff, Electric enhancement of bone healing, Science 175:1118 (1972).

    Article  Google Scholar 

  11. Z.B. Friedenberg and C.T. Brighton, Electrical fracture healing, in “Electrically Mediated Growth Mechanisms in Living Systems,” A.R. Liboff and R.A. Rinaldi, Eds., N.Y. Acad. Sci 238, New York (1974).

    Google Scholar 

  12. W. Kraus and F. Lechner, Dil heilung von pseudarthosen und spontanfracturen durch strukturhildende elektrodynamische potentiale, Meunch. Med. Wochschr. 114:1814 (1972).

    CAS  Google Scholar 

  13. C.A.L. Bassett, R.J. Pawluk and A.A. Pilla, Acceleration of fracture repair by electromagnetic fields. A surgically noninvasive method, in “Electrically Mediated Growth Mechanisms in Living Systems,” A.R. Liboff and R.A. Rinaldi, Eds., N.Y. Acad. Sci. 238, New York (1974).

    Google Scholar 

  14. C.A. Bassett, S.N. Mitchell and S.R. Gaston, Pulsing electromagnetic field treatment in ununited fractures and failed arthrodeses, JAMA 247:623 (1982).

    Article  PubMed  CAS  Google Scholar 

  15. A.T. Barker, R.A. Dixon, W.J.W. Sharrard and M.L. Sutcliffe, Pulsed magnetic field therapy for tibial non-union, Lancet, No. 8384:994 (1984).

    Article  Google Scholar 

  16. A.A. Pilla, Electrochemical information transfer at cell surfaces and junctions: application to the study and manipulation of cell regulation, in “Bioelectrochemistry,” H. Keyzer and F. Gutzmann, Eds., New York: Plenum Press (1980).

    Google Scholar 

  17. M.T. Marron, E.M. Goodman and B. Greenbaum, Mitotic delay in the Slime Mold Physarum polycephalum induced by low intensity 60 and 75 Hz electromagnetic fields, Nature 254:66 (1975).

    Article  PubMed  CAS  Google Scholar 

  18. R. Goodman, C.A.L. Bassett and A.S. Henderson, Pulsing electromagnetic fields induce cellular transcription, Science 220:1283 (1983).

    Article  PubMed  CAS  Google Scholar 

  19. R. Goodman, J. Abbott and A.S. Henderson, Transcriptional patterns in the X chromosome of Sciaro coprophila following exposure to magnetic fields, Bioelectromagnetics 8:1 (1987).

    Article  PubMed  CAS  Google Scholar 

  20. A.R. Liboff, T. Williams Jr., D.M. Strong and R. Wistar Jr., Time varying magnetic fields: Effects on DNA synthesis, Science 223:818 (1984).

    Article  PubMed  CAS  Google Scholar 

  21. B.F. Sisken, B.R. McLeod and A.A. Pilla, PEMF, direct current and neuronal regeneration: Effect of field geometry and current density, J. Bioelect. 3:81 (1984).

    Google Scholar 

  22. B.R. McLeod, A.A. Pilla and M.W. Sampsel, Electromagnetic fields induced by Helmholtz aiding coils inside saline filled boundaries, Bioelectromagnetics 4:357 (1983).

    Article  PubMed  CAS  Google Scholar 

  23. K. Takahashi, I. Kaneko, M. Date and E. Fukada, Effect of pulsing electromagnetic fields on DNA synthesis in mammalian cells in culture, Experentia 42:185 (1986).

    Article  CAS  Google Scholar 

  24. G.L. Whitson, W.L. Carrier, A.A. Francis, C.C. Shih, S. Georghiou and J.D. Regan, Effects of extremely low frequency (ELF) electric field on cell growth and DNA repair in human skin fibroblasts, Cell Tissue Kinet. 19:39 (1986).

    PubMed  CAS  Google Scholar 

  25. J.L. Phillips, W.D. Winters and L. Rutledge, In vitro exposure to electromagnetic fields: Changes in tumour cell properties, Int. J. Radiat. Biol. 49:463 (1986).

    Article  CAS  Google Scholar 

  26. S.M. Bawin, L.K. Kazmarek and W.R. Adey, Effects of modulated VHF fields on the central nervous system, Ann. NY Acad. Sci. 247:74 (1975).

    Article  PubMed  CAS  Google Scholar 

  27. CF. Blackman, The biological influences of low-frequency sinusoidal electromagnetic signals alone and superimposed on RF carrier waves, in “Interactions Between Electromagnetic Fields and Cells,” A. Chiabrera, C. Nicolini and H.P. Schwan, Eds., London: Plenum Press (1985).

    Google Scholar 

  28. A.S. Davydoff, Solitons as energy carriers in biological systems, Studia Biophysica 62:1 (1977).

    Google Scholar 

  29. A.F. Lawrence and W.R. Adey, Nonlinear wave mechanisms in interactions between excitable tissue and electromgnetic cells, Neurol. Res. 4:115 (1982).

    PubMed  CAS  Google Scholar 

  30. A. Chiabrera, M. Grattarola and R. Viviani, Interaction between electromagnetic fields and cells: Microelectrophoretic effect on ligands and surface receptors, Bioelectromagnetics 5:173 (1984).

    Article  PubMed  CAS  Google Scholar 

  31. H.V. Westerhoff, T.Y. Tsong, P.B. Chock, Yi-der Chen and R.D. Astumian, How enzymes can capture and transmit free energy from an oscillating electric field, Proc. Natl. Acad. Sci. 83:4734 (1986).

    Article  PubMed  CAS  Google Scholar 

  32. CF. Blackman, S.G. Benane, L.S. Kinney, W.T. Joines and D.E. House, Effects of ELF fields on calcium-ion efflux from brain tissues in vitro, Radiat. Res. 92:510 (1982).

    Article  PubMed  CAS  Google Scholar 

  33. S.K. Dutta, A. Subramoniam, B. Ghosh and R. Parshad, Microwave radiation-induced calcium ion efflux from human neuroblastoma cells in culture, Bioelectromagnetics 5:71 (1984).

    Article  PubMed  CAS  Google Scholar 

  34. H. Henderson and P.N.T. Unwin, Three-dimensional model of purple membrane obtained by electron microscopy, Nature 257:28 (1975).

    Article  PubMed  CAS  Google Scholar 

  35. J. Popot and J. Changeux, Nicotinic receptor of acetylcholine: Structure of an oligomeric integral membrane protein. Physiol. Rev. 64:1162 (1984).

    PubMed  CAS  Google Scholar 

  36. D.W. Urry, The gramicidin A transraembrane channel: A proposed π(L, D) helix, Proc. Natl. Acad. Sci. 68:672 (1971).

    Article  PubMed  CAS  Google Scholar 

  37. R.E. Koeppe, K.O. Hodgson and L. Stryer, Helical channels in crystals of Gramicidin A and of a Cesium-Gramicidin A complex: An x-ray diffraction study, J. Mol. Biol. 121:41 (1978).

    Article  PubMed  CAS  Google Scholar 

  38. K.S. Kim, H.L. Nguyen, P.K. Swaminathan and E. Clementi, Na+ and K+ ion transport through a solvated Gramicidin A transmembrane channel: molecular dynamics studies using parallel processors, J. Phys. Chem. 89:2870 (1985).

    Article  CAS  Google Scholar 

  39. S.D. Smith, B.R. McLeod, A.R. Liboff and K. Cooksey, Calcium cyclotron resonance and diatom raotility, Bioelectromagnetics 8, in press (1987).

    Google Scholar 

  40. J.R. Thomas, J. Schrot and A.R. Liboff, Low-intensity magnetic fields alter operant behavior in rats, Bioelectromagnetics 7:349 (1986).

    Article  PubMed  CAS  Google Scholar 

  41. E.R. Kandel and J.H. Schwartz, “Principles of Neural Science,” p.618, Elsevier/North-Holland, New York (1981).

    Google Scholar 

  42. A.R. Liboff, R.J. Rozek, M.L. Sherman, B.R. McLeod and S.D. Smith, Ca2+-45 cyclotron resonace in human lymphocytes, J. Bioelect., in press (1987).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Springer Science+Business Media New York

About this chapter

Cite this chapter

Liboff, A.R., Smith, S.D., McLeod, B.R. (1987). Experimental Evidence for Ion Cyclotron Resonance Mediation of Membrane Transport. In: Blank, M., Findl, E. (eds) Mechanistic Approaches to Interactions of Electric and Electromagnetic Fields with Living Systems. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-1968-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-1968-7_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-1970-0

  • Online ISBN: 978-1-4899-1968-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics