Skip to main content

Ubiquitin and the Molecular Pathology of Human Disease

  • Chapter
Ubiquitin and the Biology of the Cell

Abstract

The role of ubiquitin in cell stress and its central involvement in eliminating shortlived, abnormal or damaged proteins make it an important molecule for investigations of pathological cellular processes. Several areas of human pathology have been linked with the ubiquitin system:

  • Chronic degenerative diseases of the nervous system and muscle

  • Acute cellular injury associated with a cell stress response

  • Cell atrophy

  • Programmed cell death

  • Tumor biology and turnover of oncogene products

  • Processing of peptides for antigen presentation to the immune system

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Agundez, J. A., Jimenez, F., Luengo, A., Bernai, M. L., Molina, J. A., Ayuso, L., Vazquez, A., Parra, J., Duarte, J., Coria, F., and Ladero, J. M., 1995, Association between the oxidative polymorphism and early onset of Parkinson’s disease, Clin. Pharmacol. Ther. 57:291–298.

    Article  PubMed  CAS  Google Scholar 

  • Ahrens, P. B., Besancon, F., Memet, S., and Ankel, H., 1990, Tumour necrosis factor enhances induction by beta-interferon of a ubiquitin cross-reactive protein, J. Gen. Virol. 71:1675–1682.

    Article  PubMed  CAS  Google Scholar 

  • Albrecht, S., and Bilbao, J. M., 1993, Ubiquitin expression in inclusion body myositis. An immuno-histochemical study, Arch. Pathol. Lab. Med. 117:789–793.

    PubMed  CAS  Google Scholar 

  • Arnold, J. E., Tipler, C., Laszlo, L., Hope, J., Landon, M., and Mayer, R. J., 1995, The abnormal isoform of the prion protein accumulates in late-endosome-like organelles in scrapie-infected mouse brain, J. Pathol. 176:403–411.

    Article  PubMed  CAS  Google Scholar 

  • Askanas, V., and Engel, W. K., 1995, New advances in the understanding of sporadic inclusion-body myositis and hereditary inclusion-body myopathies, Curr. Opin. Rheumatol. 7:486–496.

    Article  PubMed  CAS  Google Scholar 

  • Askanas, V., Serdaroglu, P., King Engel, W., and Alvarez, R. B., 1991, Immunolocalization of ubiquitin in muscle biopsies of patients with inclusion body myositis and oculopharyngeal muscular dystrophy, Neurosci. Lett. 130:73–76.

    Article  PubMed  CAS  Google Scholar 

  • Askanas, V., Serdaroglu, P., Engel, W. K., and Alvarez, R. B., 1992, Immunocytochemical localization of ubiquitin in inclusion body myositis allows its light-microscopic distinction from polymyositis, Neurology 42:460–461.

    Article  PubMed  CAS  Google Scholar 

  • Askanas, V., Engel, W. K., Bilak, M., Alvarez, R. B., and Selkoe, D. J., 1994, Twisted tubulofilaments of inclusion body myositis muscle resemble paired helical filaments of Alzheimer brain and contain hyperphosphorylated tau, Am. J. Pathol. 144:177–187.

    PubMed  CAS  Google Scholar 

  • Bacci, B., Cochran, E., Nunzi, M. G., Izeki, E., Mizutani, T., Patton, A., Hite, S., Sayre, L. M., Autilio-Gambetti, L., and Gambetti, P., 1994, Amyloid beta precursor protein and ubiquitin epitopes in human and experimental dystrophic axons. Ultrastructural localization, Am. J. Pathol. 144:702–710.

    PubMed  CAS  Google Scholar 

  • Bailey, J. L., Wang, X., England, B. K., Price, S. R., Ding, X., and Mitch, W. E., 1996, The acidosis of chronic renal failure activates muscle proteolysis in rats by augmenting transcription of genes encoding proteins of the ATP-dependent ubiquitin-proteasome pathway, J. Clin. Invest. 97:1447–1453.

    Article  PubMed  CAS  Google Scholar 

  • Ball, E., Karlik, C. C., Beall, C. J., Saville, D. L., Sparrow, J. C., Bullard, B., and Fyrberg, E. A., 1987, Arthrin, a myofibrillar protein of insect flight muscle, is an actinubiquitin conjugate, Cell 51:221–228

    Article  PubMed  CAS  Google Scholar 

  • Bancher, C., Brunner, C., Lassmann, H., Budka, H., Jellinger, K., Wiche, G., Seitelberger, F., Grundke Iqbal, I., and Wisniewski, H. M., 1989, Accumulation of abnormally phosphorylated tau precedes the formation of neurofibrillary tangles in Alzheimer’s disease, Brain Res. 477:90–99.

    Article  PubMed  CAS  Google Scholar 

  • Baracos, V. E., De Vivo, C., Hoyle, D. H., and Goldberg, A. L., 1995, Activation of the ATP-ubiquitin-proteasome pathway in skeletal muscle of cachectic rats bearing a hepatoma, Am. J. Physiol. 268:E996–1006.

    PubMed  CAS  Google Scholar 

  • Bizzi, A., Schaetzle, B., Patton, A., Gambetti, P., and Autilio-Gambetti, L., 1991, Axonal transport of two major components of the ubiquitin system: Free ubiquitin and ubiquitin carboxyl-terminal hydrolase PGP 9.5 [published erratum in Brain Res. 1991, 557:359], Brain Res. 548:292–299.

    Article  PubMed  CAS  Google Scholar 

  • Bond, U., and Schlesinger, M. J., 1985, Ubiquitin is a heat shock protein in chicken embryo fibroblasts, Mol. Cell. Biol. 5:949–956.

    PubMed  CAS  Google Scholar 

  • Bond, U., and Schlesinger, M. J., 1986, The chicken ubiquitin gene contains a heat shock promoter and expresses an unstable mRNA in heat-shocked cells, Mol. Cell. Biol. 6:4602–4610.

    PubMed  CAS  Google Scholar 

  • Bond, U., Agell, N., Haas, A. L., Redman, K., and Schlesinger, M. J., 1988, Ubiquitin in stressed chicken embryo fibroblasts, J. Biol. Chem. 263:2384–2388.

    PubMed  CAS  Google Scholar 

  • Bowling, A. C., Schulz, J. B., Brown, R. J., and Beal, M. F., 1993, Superoxide dismutase activity, oxidative damage, and mitochondrial energy metabolism in familial and sporadic amyotrophic lateral sclerosis, J. Neurochem. 61:2322–2325.

    Article  PubMed  CAS  Google Scholar 

  • Braak, H., and Braak, E., 1991, Neuropathological staging of Alzheimer-related changes, Acta Neuropathol. 82:239–259.

    Article  PubMed  CAS  Google Scholar 

  • Bredesen, D. E., 1995, Neural apoptosis, Ann. Neurol. 38:839–851.

    Article  PubMed  CAS  Google Scholar 

  • Byrne, E., Lennox, G., Lowe, J., and Godwin-Austen, R. B., 1989, Diffuse Lewy body disease: Clinical features in 15 cases, J. Neurol. Neurosurg. Psychiatry 52:709–717.

    Article  PubMed  CAS  Google Scholar 

  • Cammarata, S., Caponnetto, C., and Tabaton, M., 1993, Ubiquitin-reactive neurites in cerebral cortex of subjects with Huntingtons chorea: A pathological correlate of dementia? Neurosci. Lett. 156:96–98.

    Article  PubMed  CAS  Google Scholar 

  • Cavanagh, J. B., Nolan, C. C., Seville, M. P., Anderson, V. E., and Leigh, P. N., 1993, Routes of excretion of neuronal lysosomal dense bodies after ventricular infusion of leupeptin in the rat: A study using ubiquitin and PGP 9.5 immunocytochemistry, J. Neurocytol. 22:779–791.

    Article  PubMed  CAS  Google Scholar 

  • Chakraborty, G., and Ingoglia, N. A., 1993, N-terminal arginylation and ubiquitin-mediated proteolysis in nerve regeneration, Brain Res. Bull. 30:439–445.

    Article  PubMed  CAS  Google Scholar 

  • Chen, Y., and Piper, P. W., 1995, Consequences of the overexpression of ubiquitin in yeast: Elevated tolerances of osmostress, ethanol and canavanine, yet reduced tolerances of cadmium, arsenite and paromomycin, Biochim. Biophys. Acta 1268:59–64.

    Article  PubMed  Google Scholar 

  • Cheng, L., Watt, R., and Piper, P. W., 1994, Polyubiquitin gene expression contributes to oxidative stress resistance in respiratory yeast (Saccharomyces cerevisiae), Mol. Gen. Genet. 243:358–362.

    Article  PubMed  CAS  Google Scholar 

  • Cochran, E., Bacci, B., Chen, Y., Patton, A., Gambetti, P., and Autilio-Gambetti, L., 1991, Amyloid precursor protein and ubiquitin immunoreactivity in dystrophic axons is not unique to Alzheimer’s disease, Am. J. Pathol. 139:485–489.

    PubMed  CAS  Google Scholar 

  • Cole, G. M., and Timiras, P. S., 1987, Ubiquitin-protein conjugates in Alzheimer’s lesions, Neurosci. Lett. 79:207–212.

    Article  PubMed  CAS  Google Scholar 

  • Costelli, P., Garcia-Martinez, C., Llovera, M., Carbo, N., Lopez-Soriano, F. J., Agell, N., Tessitore, L., Baccino, F. M., and Argiles, J. M., 1995, Muscle protein wasting in tumor-bearing rats is effectively antagonized by a beta 2-adrenergic agonist (clenbuterol). Role of the ATP-ubiquitin-dependent proteolytic pathway, J. Clin. Invest. 95:2367–2372.

    Article  PubMed  CAS  Google Scholar 

  • Cras, P., Kawai, M., Lowery, D., Gonzalez, D. P., Greenberg, B., and Perry, G., 1991, Senile plaque neuntes in Alzheimer disease accumulate amyloid precursor protein, Proc. Natl. Acad. Sci. USA 88:7552–7556.

    Article  PubMed  CAS  Google Scholar 

  • Crystal, H., Dickson, D., Lizardi, J., Davies, P., and Wolfson, L., 1990, Antemortem diagnosis of diffuse Lewy body disease, Neurology 40:1523–1528.

    Article  PubMed  CAS  Google Scholar 

  • Das, K. P., and Surewicz, W. K., 1995, On the substrate specificity of alpha-crystallin as a molecular chaperone, Biochem. J. 311:367–370.

    PubMed  CAS  Google Scholar 

  • Dawson, S., Arnold, J., Mayer, N. J., Reynolds, S., Billett, M. A., Kloetzel, P., Tanaka, K., and Mayer, R. J., 1995, Developmental changes of the 26S proteasome in abdominal intersegmental muscles of Manduca sexta during programmed cell death, J. Biol. Chem. 270:1850–1858.

    Article  PubMed  CAS  Google Scholar 

  • Day, I. N., Hinks, L. J., and Thompson, R. J., 1990, The structure of the human gene encoding protein gene product 9.5 (PGP9.5), a neuron-specific ubiquitin C-terminal hydrolase, Biochem. J. 268:521–524.

    PubMed  CAS  Google Scholar 

  • DeArmond, S. J., and Prusiner, S. B., 1995a, Etiology and pathogenesis of prion diseases, Am. J. Pathol. 146:785–811.

    PubMed  CAS  Google Scholar 

  • DeArmond, S. J., and Prusiner, S. B., 1995b, Prion protein transgenes and the neuropathology in prion diseases, Brain Pathol. 5:77–89.

    Article  PubMed  CAS  Google Scholar 

  • Delic, J., Morange, M., and Magdelenat, H., 1993, Ubiquitin pathway involvement in human lymphocyte gamma-irradiation-induced apoptosis, Mol. Cell. Biol. 13:4875–4883.

    PubMed  CAS  Google Scholar 

  • De Marini, D. J., Papa, F. R., Swaminathan, S., Ursic, D., Rasmussen, T. P., Culbertson, M. R., and Hochstrasser, M., 1995, The yeast SEN3 gene encodes a regulatory subunit of the 26S proteasome complex required for ubiquitin-dependent protein degradation in vivo, Mol. Cell. Biol. 15:6311–6321.

    Google Scholar 

  • Dewar, D., Graham, D. I., Teasdale, G. M., and McCulloch, J., 1994, Cerebral ischemia induces alterations in tau and ubiquitin proteins, Dementia 5:168–173.

    PubMed  CAS  Google Scholar 

  • Dexter, D. T., Holley, A. E., Flitter, W. D., Slater, T. F., Wells, F. R., Daniel, S. E., Lees, A. J., Jenner, P., and Marsden, C. D., 1994, Increased levels of lipid hydroperoxides in the parkinsonian substantia nigra: An HPLC and ESR study, Mov. Disord. 9:92–97.

    Article  PubMed  CAS  Google Scholar 

  • Dickson, D. W., Crystal, H., Mattiace, L. A., Kress, Y., Schwagerl, A., Ksiezak-Reding, H., Davies, P., and Yen, S. H., 1989, Diffuse Lewy body disease: Light and electron microscopic immuno-cytochemistry of senile plaques, Acta Neuropathol. 78:572–584.

    Article  PubMed  CAS  Google Scholar 

  • Dickson, D. W., Wertkin, A., Kress, Y., Ksiezak-Reding, H., and Yen, S. H., 1990a, Ubiquitin immunoreactive structures in normal human brains. Distribution and developmental aspects, Lab. Invest. 63:87–99.

    PubMed  CAS  Google Scholar 

  • Dickson, D. W., Wertkin, A., Mattiace, L. A., Fier, E., Kress, Y., Davies, P., and Yen, S. H., 1990b, Ubiquitin immunoelectron microscopy of dystrophic neurites in cerebellar senile plaques of Alzheimer’s disease, Acta Neuropathol. 79:486–493.

    Article  PubMed  CAS  Google Scholar 

  • Dickson, D. W., Ruan, D., Crystal, H., Mark, M. H., Davies, P., Kress, Y., and Yen, S. H., 1991, Hippocampal degeneration differentiates diffuse Lewy body disease (DLBD) from Alzheimer’s disease: Light and electron microscopic immunocytochemistry of CA2-3 neurites specific to DLBD, Neurology 41:1402–1409.

    Article  PubMed  CAS  Google Scholar 

  • Dickson, D. W., Crystal, H. A., Mattiace, L. A., Masur, D. M., Blau, A. D., Davies, P., Yen, S. H., and Aronson, M. K., 1992, Identification of normal and pathological aging in prospectively studied nondemented elderly humans, Neurobiol. Aging 13:179–189.

    Article  PubMed  CAS  Google Scholar 

  • Dickson, D. W., Schmidt, M. L., Lee, V. M., Zhao, M. L., Yen, S. H., and Trojanowski, J. Q., 1994, Immunoreactivity profile of hippocampal CA2/3 neurites in diffuse Lewy body disease, Acta Neuropathol. 87:269–276.

    Article  PubMed  CAS  Google Scholar 

  • D’Mello, S. R., and Galli, C., 1993, SGP2, ubiquitin, 14K lectin and RP8 mRNAs are not induced in neuronal apoptosis, Neuroreports 4:355–358.

    Article  Google Scholar 

  • England, B. K., and Price, S. R., 1995, Acidosis and glucocorticoids interact to provoke muscle protein and amino acid catabolism, Blood Purification 13:147–152.

    Article  PubMed  CAS  Google Scholar 

  • Ermisch, B., and Schweccheimer, K., 1995, Protein gene product (PGP) 9.5 in diagnostic (neuro-) oncology. An immunomorphological study, Clin. Neuropathol. 14:130–136.

    PubMed  CAS  Google Scholar 

  • Fahn, S., and Cohen, G., 1992, The oxidant stress hypothesis in Parkinson’s disease: Evidence supporting it, Ann. Neurol. 32:804–812.

    Article  PubMed  CAS  Google Scholar 

  • Fang, C. H., Tiao, G., James, H., Ogle, C., Fischer, J. E., and Hasselgren. P. O., 1995. Burn injury stimulates multiple proteolytic pathways in skeletal muscle, including the ubiquitin-energy-dependent pathway, J. Am. Coll. Surg. 180:161–170.

    PubMed  CAS  Google Scholar 

  • Fenteany, G., Standaert, R. F., Lane, W. S., Choi. S., Corey. E. J., and Schreiber. S. L., 1995. Inhibition of proteasome activities and subunit-specific amino-terminal threonine modification by lactacystin, Science 268:726–731.

    Article  PubMed  CAS  Google Scholar 

  • Fergusson, J., Landon, M., Lowe, J., Dawson, S. P., Layfield. R., Hanger. D. P., and Mayer. R. J., 1996. Neurosci. Letts. 219:167–170.

    Article  CAS  Google Scholar 

  • Figueiredo-Pereira, P. M., Berg, K. A., and Wilk. S., 1994. A new inhibitor of the chymotrypsin-like activity of the multicatalytic proteinase complex (20S proteasome) induces accumulation of ubiquitin-protein conjugates in a neuronal cell. J. Neurochem. 63:1578–1581.

    Article  PubMed  CAS  Google Scholar 

  • Finley, D., Ozkaynak. E., and Varshavsky. A., 1987. The yeast polyubiquitin gene is essential for resistance to high temperatures, starvation, and other stresses. Cell 48:1035–1046.

    Article  PubMed  CAS  Google Scholar 

  • Fornace, A. J., Jr., Alamo, I., Jr., Hollander. M. C. and Lamoreaux. E., 1989. Ubiquitin mRNA is a major stress-induced transcript in mammalian cells. Nucleic Acids Res. 17:1215–1230.

    Article  PubMed  CAS  Google Scholar 

  • Fraser, A., and Evan, G., 1996, A license to kill. Cell 85:781–784.

    Article  PubMed  CAS  Google Scholar 

  • Fujimoro, M., Sawada, H., and Yokosawa, H., 1994. Production and characterization of monoclonal antibodies specific to multi-ubiquitin chains of polyubiquitinated proteins. FEBS Lett. 349:173–180.

    Article  Google Scholar 

  • Funata, N., Maeda, Y., Koike, Y., Yano. M., Kaseda. M., Muro. T., Okeda. R., Iwata. M., and Uokoji. M., 1990, Review article: Neuronal intranuclear hyaline inclusion disease: Report of a case and review of the literature. Clin. Neuropathol. 9:89–96.

    PubMed  CAS  Google Scholar 

  • Gai, W. P., Blessing, W. W., and Blumbergs. P. C., 1995. Ubiquitin-positive degenerating neurites in the brainstem in Parkinson’s disease. Brain 118:1447–1459.

    Article  PubMed  Google Scholar 

  • Garcia-Martinez, C., Llovera, M., Agell, N., Lopez-Soriano. F. J., and Argiles. J. M. 1994. Ubiquitin gene expression in skeletal muscle is increased by tumour necrosis factor-alpha. Biochem. Biophys. Res. Commun. 201:682–686.

    Article  PubMed  CAS  Google Scholar 

  • Gibb. W., Esiri, M. and Lees, A., 1985. Clinical and pathological features of diffuse cortical Lewy body disease (Lewy body dementia). Brain 110:1131–1153.

    Article  Google Scholar 

  • Goldfarb, L. G., and Brown. P., 1995. The transmissible spongiform encephalopathies. Annu. Rev. Med. 46:57–65.

    Article  PubMed  CAS  Google Scholar 

  • Goldman. J. E., and Corbin. E., 1991. Rosenthal fibers contain ubiquitinated alpha B-crystallin. Am. J. Pathol. 139:933–938.

    PubMed  CAS  Google Scholar 

  • Gou. J. P., and Leterrier. J. F., 1995. Possible involvement of ubiquitination in neurofilament degradation. Biochem. Biophys. Res. Commun. 217:529–538.

    Article  PubMed  CAS  Google Scholar 

  • Gregori. L., Fuchs. C. Figueiredo-Pereira. M. E., Van Nostrand. W. E., and Goldgaber. D., 1995. Amyloid beta-protein inhibits ubiquitin-dependent protein degradation in vitro. J. Biol. Chem. 270:19702–19708.

    Article  PubMed  CAS  Google Scholar 

  • Gropper. R., Brandt. R. A., Elias. S., Bearer. C. F. Mayer. A., Schwartz. A. L., and Ciechanover. A., 1991. The ubiquitin-activating enzyme. El. is required for stress-induced lysosomal degradation of cellular proteins. J. Biol. Chem. 266:3602–3610.

    PubMed  CAS  Google Scholar 

  • Grundke-Iqbal, I., Iqbal. K., Tung. Y C. H., Quinlan. M., Wisniewski. H. M., and Binder. L. I., 1986. Abnormal phosphorylation of the microtubule-associated protein tau in Alzheimer-cytoskeletal pathology. Proc. Natl. Acad. Sci. USA 83:4913–4917.

    Article  PubMed  CAS  Google Scholar 

  • Guarino. L. A., Smith. G., and Wen, D., 1995. Ubiquitin is attached to membranes of baculovirus particles by a novel type of phospholipid anchor. Cell 80:301–309.

    Article  PubMed  CAS  Google Scholar 

  • Haas, A. L., and Bright, P. M., 1985, The immunochemical detection and quantitation of intracellular ubiquitin-protein conjugates, J. Biol. Chem. 260:12464–12473.

    PubMed  CAS  Google Scholar 

  • Haas, A. L., Baboshina, O., Williams, B., and Schwartz, L. M., 1995, Coordinated induction of the ubiquitin conjugation pathway accompanies the developmentally programmed death of insect skeletal muscle, J. Biol. Chem. 270:9407–9412.

    Article  PubMed  CAS  Google Scholar 

  • Hand, S. C., and Hardewig, I., 1996, Downregulation of cellular metabolism during environmental stress: Mechanisms and implications, Annu. Rev. Physiol. 539-563.

    Google Scholar 

  • Hansen, L. A., Masliah, E., Terry, R. D., and Mirra, S. S., 1989, A neuropathological subset of Alzheimer’s disease with concomitant Lewy body disease and spongiform change, Acta Neuropathol. 78:194–201.

    Article  PubMed  CAS  Google Scholar 

  • Hansen, L., Salmon, D., Galasko, D., Masliah, E., Katzman, R., DeTeresa, R., Thal, L., Pay, M., Hofsteter, R., Klauber, M., Rice, V., Butters, N., and Alford, M., 1990, The Lewy body variant of Alzheimer’s disease, Neurology 40:1–8.

    Article  PubMed  CAS  Google Scholar 

  • Harris, M. D., Moore, I. E., Steart, P. V., and Weiler, R. O., 1990, Protein gene product (PGP) 9.5 as a reliable marker in primitive neuroectodermal tumours—An immunohistochemical study of 21 childhood cases, Histopathology 16:271–277.

    Article  PubMed  CAS  Google Scholar 

  • Hasselgren, P. O., 1995, Muscle protein metabolism during sepsis, Biochem. Soc. Trans. 23:1019–1025.

    PubMed  CAS  Google Scholar 

  • Hayashi, T., Takada, K., and Matsuda, M., 1991, Changes in ubiquitin and ubiquitin-protein conjugates in the CA1 neurons after transient sublethal ischemia, Mol. Chem. Neuropathol. 15:75–82.

    Article  PubMed  CAS  Google Scholar 

  • Hayashi, T., Tanaka, J., Kamikubo, T., Takada, K., and Matsuda, M., 1993, Increase in ubiquitin conjugates dependent on ischemic damage, Brain Res. 620:171–173.

    Article  PubMed  CAS  Google Scholar 

  • Heggie, P., Burdon, T., Lowe, J., Landon, M., Lennox, G., Jefferson, D., and Mayer, R. J., 1989, Ubiquitin gene expression in brain and spinal cord in motor neurone disease, Neurosci. Lett. 102:2–3.

    Article  Google Scholar 

  • Hicke, L., and Riezman, H., 1996, Ubiquitination of a yeast plasma membrane receptor signals its ligand-stimulated endocytosis, Cell 84:277–287.

    Article  PubMed  CAS  Google Scholar 

  • Hilenski, L. L., Terracio, L., Haas, A. L., and Borg, T. K., 1992, Immunolocalization of ubiquitin conjugates at Z-bands and intercalated discs of rat cardiomyocytes in vitro and in vivo, J. Histochem. Cytochem. 40:1037–1042.

    Article  PubMed  CAS  Google Scholar 

  • Huntington’s Disease Collaborative Research Group, 1993, A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes, Cell 72:971–983.

    Article  Google Scholar 

  • Hurtley, S. M., 1996, Lysosomal degradation of ubiquitin-tagged receptors, Science 271:617.

    Article  PubMed  CAS  Google Scholar 

  • Iqbal, M., Chatterjee, S., Kauer, J. C., Das, M., Messina, P., Freed, B., Biazzo, W., and Siman, R., 1995, Potent inhibitors of proteasome, J. Med. Chem. 38:2276–2277.

    Article  PubMed  CAS  Google Scholar 

  • Ironside, J. W., McCardle, L., Hayward, P. A., and Bell, J. E., 1993, Ubiquitin immunocytochemistry in human spongiform encephalopathies, Neuropathol. Appl. Neurobiol. 19:134–140.

    Article  PubMed  CAS  Google Scholar 

  • Isozaki, Y., Mitch, W. E., England, B. K., and Price, S. R., 1996, Protein degradation and increased mRNAs encoding proteins of the ubiquitin-proteasome proteolytic pathway in BC3H1 myocytes require an interaction between glucocorticoids and acidification, Proc. Natl. Acad. Sci. USA 93:1967–1971.

    Article  PubMed  CAS  Google Scholar 

  • Ito, H., Ii, K., Hirano, A., and Dickson, D., 1991, Immunohistochemical identification of the proteasome in ubiquitin reactive abnormal structures of the nervous system, J. Neuropathol. Exp. Neurol. 50:360.

    Google Scholar 

  • Iwatsubo, T., Hasegawa, M., Esaki, Y., and Ihara, Y., 1992, Lack of ubiquitin immunoreactivities at both ends of neuropil threads. Possible bidirectional growth of neuropil threads, Am. J. Pathol. 140:277–282.

    PubMed  CAS  Google Scholar 

  • Jack, D. L., Chakraborty, G., and Ingoglia, N. A., 1992, Ubiquitin is associated with aggregates of arginine modified proteins in injured nerves, Neuroreports 3:47–50.

    Article  CAS  Google Scholar 

  • Jackson, M., and lowe, J., 1996, The new neuropathology of degenerative front of temporal dementias, Acta Neuropathol. 91:127–134.

    Article  PubMed  CAS  Google Scholar 

  • Jackson, M., Gentleman, S., Lennox, G., Ward, L., Gray, T., Randall, K., Morrell, K., and Lowe, J., 1995, The cortical neuritic pathology of Huntington’s disease, Neuropathol. Appl. Neurobiol. 21:18–26.

    Article  PubMed  CAS  Google Scholar 

  • Jenner, P., Dexter, D. T., Sian, J., Schapira, A. H., and Marsden, C. D., 1992, Oxidative stress as a cause of nigral cell death in Parkinson’s disease and incidental Lewy body disease. The Royal Kings and Queens Parkinson’s Disease Research Group, Ann. Neurol. 32:7.

    Article  Google Scholar 

  • Jones, C. T., Swingler, R. J., and Brock, D. J., 1994, Identification of a novel SOD1 mutation in an apparently sporadic amyotrophic lateral sclerosis patient and the detection of Ile113 Thr in three others, Hum. Mol. Genet. 3:649–650.

    Article  PubMed  CAS  Google Scholar 

  • Kamikubo, T., and Hayashi, T., 1996, Changes in proteasome activity following transient ischemia, Neurochem. Int. 28:209–212.

    Article  PubMed  CAS  Google Scholar 

  • Kenward, N., Hope, J., Landon, M., and Mayer, R. J., 1994, Expression of polyubiquitin and heat-shock protein 70 genes increases in the later stages of disease progression in scrapie-infected mouse brain, J. Neurochem. 62:1870–1877.

    Article  PubMed  CAS  Google Scholar 

  • Kim, H., Gearing, M., and Mirra, S. S., 1995, Ubiquitin-positive CA2/3 neuntes in hippocampus coexist with cortical Lewy bodies, Neurology 45:1768–1770.

    Article  PubMed  CAS  Google Scholar 

  • Kumar, S., and Harvey, N. L., 1995, Role of multiple cellular proteases in the execution of programmed cell death, FEBS Lett. 375:169–173.

    Article  PubMed  CAS  Google Scholar 

  • Kwak, S., Masaki, T., Ishiura, S., and Sugita, H., 1991, Multicatalytic proteinase is present in Lewy bodies and neurofibrillary tangles in diffuse Lewy body disease brains, Neurosci. Lett. 128:21–24.

    Article  PubMed  CAS  Google Scholar 

  • Laszlo, L., Doherty, F. J., Osborn, N. U., and Mayer, R. J., 1990, Ubiquitinated protein conjugates are specifically enriched in the lysosomal system of fibroblasts, FEBS Lett. 261:365–368.

    Article  PubMed  CAS  Google Scholar 

  • Laszlo, L., Doherty, F. J., Watson, A., Self, T., Landon, M., Lowe, J., and Mayer, R. J., 1991a, Immunogold localisation of ubiquitin-protein conjugates in primary (azurophilic) granules of polymorphonuclear neutrophils, FEBS Lett. 279:175–178.

    Article  PubMed  CAS  Google Scholar 

  • Laszlo, L., Tuckwell, J., Self, T., Lowe, J., Landon, M., Smith, S., Hawthorne, J. N., and Mayer, R. J., 1991b, The latent membrane protein-1 in Epstein-Barr virus-transformed lymphoblastoid cells is found with ubiquitin-protein conjugates and heat-shock protein 70 in lysosomes oriented around the microtubule organizing centre, J. Pathol. 164:203–214.

    Article  PubMed  CAS  Google Scholar 

  • Laszlo, L., Lowe, J., Self, T., Kenward, N., Landon, M., McBride, T., Farquhar, C., McConnell, I., Brown, J., Hope, J., 1992, Lysosomes as key organelles in the pathogenesis of prion encephalopathies, J. Pathol. 166:333–341.

    Article  PubMed  CAS  Google Scholar 

  • Layfield, R., Rog, D., Arnold, J., Lowe, J., Mayer, R. J., and Landon, M., 1994, Immunoreactivity to ubiquitin-activating enzyme (El) is detectable in some neurofibrillary tangles of Alzheimer’s disease, Neuropathol. Appl. Neurobiol. 20:504.

    Google Scholar 

  • Leclerc, A., Tome, F. M., and Fardeau, M., 1993, Ubiquitin and beta-amyloid-protein in inclusion body myositis (IBM), familial IBM-like disorder and oculopharyngeal muscular dystrophy: An immunocytochemical study, Neuromusc. Disord. 3:283–291.

    Article  PubMed  CAS  Google Scholar 

  • Leigh, P. N., Anderton, B. H., Dodson, A., Gallo, J. M., Swash, M., and Power, D. M., 1988, Ubiquitin deposits in anterior horn cells in motor neurone disease, Neurosci. Lett. 93:2–3.

    Article  Google Scholar 

  • Lenk, S. E., Dunn, W. A., Jr., Trausch, J. S., Ciechanover, A., and Schwartz, A. L., 1992, Ubiquitin-activating enzyme, El, is associated with maturation of autophagic vacuoles, J. Cell Biol. 118:301–308.

    Article  PubMed  CAS  Google Scholar 

  • Lennox, G., Lowe, J., Morrell, K., Landon, M., and Mayer, R. J., 1989, Anti-ubiquitin immunocytochemistry is more sensitive than conventional techniques in the detection of diffuse Lewy body disease, J. Neurol. Neurosurg. Psychiatry 52:67–71.

    Article  PubMed  CAS  Google Scholar 

  • Li, G. L., and Farooque, M., 1996, Expression of ubiquitin-like immunoreactivity in axons after compression trauma to rat spinal cord, Acta Neuropathol. 91:155–160.

    Article  PubMed  CAS  Google Scholar 

  • Llovera, M., Garcia-Martinez, C., Agell, N., Marzabal, M., Lopez-Soriano, F. J., and Argiles, J. M., 1994, Ubiquitin gene expression is increased in skeletal muscle of tumour-bearing rats, FEBS Lett. 338:311–318.

    Article  PubMed  CAS  Google Scholar 

  • Loeb, K. R., and Haas, A. L., 1992, The interferon-inducible 15-kDa ubiquitin homolog conjugates to intracellular proteins, J. Biol. Chem. 267:7806–7813.

    PubMed  CAS  Google Scholar 

  • Loeb, K. R., and Haas, A. L., 1994, Conjugates of ubiquitin cross-reactive protein distribute in a cytoskeletal pattern, Mol. Cell. Biol. 14:8408–8419.

    PubMed  CAS  Google Scholar 

  • Love, S., Saitoh, T., Quijada, S., Cole, G. M., and Terry, R. D., 1988, Alz-50, ubiquitin and tau immunoreactivity of neurofibrillary tangles, Pick bodies and Lewy bodies, J. Neuropathol. Exp. Neurol. 47:393–405.

    Article  PubMed  CAS  Google Scholar 

  • Low, P., Doherty, F. J., Sass, M., Kovacs, J., Mayer, R. J., and Laszlo, L., 1993, Immunogold localisation of ubiquitin-protein conjugates in Sf9 insect cells. Implications for the biogenesis of lysosome-related organelles, FEBS Lett. 316:152–156.

    Article  PubMed  CAS  Google Scholar 

  • Low, P., Doherty, F. J., Fellinger, E., Sass, M., Mayer, R. J., and Laszlo, L., 1995, Related organelles of the endosome-lysosome system contain a different repertoire of ubiquitinated proteins in Sf9 insect cells, FEBS Lett. 368:125–131.

    Article  PubMed  CAS  Google Scholar 

  • Lowe, J., 1994, New pathological findings in amyotrophic lateral sclerosis, J. Neurol. Sci. 124:38–51.

    Article  PubMed  Google Scholar 

  • Lowe, J., and Mayer, R. J., 1989, Ubiquitin: New insights into chronic degenerative diseases, Br. J. Hosp. Med. 42:462–466.

    PubMed  CAS  Google Scholar 

  • Lowe, J., and Mayer, R. J., 1990, Ubiquitin, cell stress and diseases of the nervous system, Neuropathol. Appl. Neurobiol. 16:281–291.

    Article  PubMed  CAS  Google Scholar 

  • Lowe, J., Blanchard, A., Morrell, K., Lennox, G., Reynolds, L., Billett, M., Landon, M., and Mayer, R. J., 1988a, Ubiquitin is a common factor in intermediate filament inclusion bodies of diverse type in man, including those of Parkinson’s disease, Pick’s disease, and Alzheimer’s disease, as well as Rosenthal fibres in cerebellar astrocytomas, cytoplasmic bodies in muscle, and Mallory bodies in alcoholic liver disease, J. Pathol. 155:9–15.

    Article  PubMed  CAS  Google Scholar 

  • Lowe, J., Lennox, G., Jefferson, D., Morrell, K., McQuire, D., Gray, T., Landon, M., Doherty, F. J., and Mayer, R. J., 1988b, A filamentous inclusion body within anterior horn neurones in motor neurone disease defined by immunocytochemical localisation of ubiquitin, Neurosci. Lett. 94:203–210.

    Article  PubMed  CAS  Google Scholar 

  • Lowe, J., Aldridge, F., Lennox, G., Doherty, F. J., Jefferson, D., Landon, M., and Mayer, R. J., 1989, Inclusion bodies in motor cortex and brainstem of patients with motor neurone disease are detected by immunocytochemical localisation of ubiquitin, Neurosci. Lett. 105:7–13.

    Article  PubMed  CAS  Google Scholar 

  • Lowe, J., McDermott, H., Kenward, N., Landon, M., Mayer, R. J., Bruce, M., McBride, P., Somerville, R. A., and Hope, J., 1990a, Ubiquitin conjugate immunoreactivity in the brains of scrapie infected mice, J. Pathol. 162:61–66.

    Article  PubMed  CAS  Google Scholar 

  • Lowe, J., McDermott, H., Landon, M., Mayer, R. J., and Wilkinson, K. D., 1990b, Ubiquitin carboxyl-terminal hydrolase (PGP 9.5) is selectively present in ubiquitinated inclusion bodies characteristic of human neurodegenerative diseases, J. Pathol. 161:153–160.

    Article  PubMed  CAS  Google Scholar 

  • Lowe, J., Fergusson, J., Kenward, N., Laszlo, L., Landon, M., Farquhar, C., Brown, J., Hope, J., and Mayer, R. J., 1992a, Immunoreactivity to ubiquitin-protein conjugates is present early in the disease process in the brains of scrapie-infected mice, J. Pathol. 168:169–177.

    Article  PubMed  CAS  Google Scholar 

  • Lowe, J., McDermott, H., Pike, I., Spendlove, I., Landon, M., and Mayer, R. J., 1992b, Alpha B crystallin expression in non-lenticular tissues and selective presence in ubiquitinated inclusion bodies in human disease, J. Pathol. 166:61–68.

    Article  PubMed  CAS  Google Scholar 

  • Lowe, J., Mayer, R. J., and Landon, M., 1993, Ubiquitin in neurodegenerative diseases, Brain Pathol. 3:55–65.

    Article  PubMed  CAS  Google Scholar 

  • Lowe, J., McDermott, H., Loeb, K., Landon, M., Haas, A. L., and Mayer, R. J., 1995, Immuno-histochemical localization of ubiquitin cross-reactive protein in human tissues, J. Pathol. 177:163–169.

    Article  PubMed  CAS  Google Scholar 

  • Magnusson, K., and Wieloch, T., 1989, Impairment of protein ubiquitination may cause delayed neuronal death, Neurosci. Lett. 96:264–270.

    Article  PubMed  CAS  Google Scholar 

  • Malandrini, A., Cavallaro, T., Fabrizi, G. M., Berti, G., Salvestroni, R., Salvadori, C., and Guazzi, G. C., 1995, Ultrastructure and immunoreactivity of dystrophic axons indicate a different pathogenesis of Hallervorden-Spatz disease and infantile neuroaxonal dystrophy, Virchows Arch. 427:415–421.

    Article  PubMed  CAS  Google Scholar 

  • Manetto, V., Abdul-Karim, F. W., Perry, G., Tabaton, M., Autilio-Gambetti, L., and Gambetti, P., 1989, Selective presence of ubiquitin in intracellular inclusions, Am. J. Pathol. 134:505–513.

    PubMed  CAS  Google Scholar 

  • Mansoor, O., Beaufrere, B., Boirie, Y., Ralliere, C., Taillandier, D., Aurousseau, E., Schoeffler, P., Arnal, M., and Attaix, D., 1996, Increased mRNA levels for components of the lysosomal, Ca2+-activated, and ATP-ubiquitin-dependent proteolytic pathways in skeletal muscle from head trauma patients, Proc. Natl. Acad. Sci. USA 93:2714–2718.

    Article  PubMed  CAS  Google Scholar 

  • Martin, S. J., and Green, D. R., 1995, Protease activation during apoptosis: Death by a thousand cuts? Cell 82:349–352.

    Article  PubMed  CAS  Google Scholar 

  • Masaki, T., Ishiura, S., Sugita, H., and Kwak, S., 1994, Multicatalytic proteinase is associated with characteristic oval structures in cortical Lewy bodies: An immunocytochemical study with light and electron microscopy, J. Neurol. Sci. 122:127–134.

    Article  PubMed  CAS  Google Scholar 

  • Mather, K., Martin, J. E., Swash, M., Vowles, G., Brown, A., and Leigh, P. N., 1993, Histochemical and immunocytochemical study of ubiquitinated neuronal inclusions in amyotrophic lateral sclerosis, Neuropathol. Appl. Neurobiol. 19:141–145.

    Article  PubMed  CAS  Google Scholar 

  • Maury, C. P., 1995, Molecular pathogenesis of beta-amyloidosis in Alzheimer’s disease and other cerebral amyloidoses, Lab. Invest. 72:4–16.

    PubMed  CAS  Google Scholar 

  • Mayer, R. J., Lowe, J., Lennox, G., Landon, M., MacLennan, K., and Doherty, F. J., 1989, Intermediate filament-ubiquitin diseases: Implications for cell sanitization, Biochem. Soc. Symp. 55:193–201.

    PubMed  CAS  Google Scholar 

  • Mayer, R. J., Arnold, J., Laszlo, L., Landon, M., and Lowe, J., 1991, Ubiquitin in health and disease, Biochim. Biophys. Acta 1089:141–157.

    Article  PubMed  CAS  Google Scholar 

  • Mayer, R. J., Landon, M., Laszlo, L., Lennox, G., and Lowe, J., 1992, Protein processing in lysosomes: The new therapeutic target in neurodegenerative disease, Lancet 340:156–159.

    Article  PubMed  CAS  Google Scholar 

  • Medina, R., Wing, S. S., Haas, A., and Goldberg, A. L., 1991, Activation of the ubiquitin-ATP-dependent proteolytic system in skeletal muscle during fasting and denervation atrophy, Biomed. Biochim. Acta 50:347–356.

    PubMed  CAS  Google Scholar 

  • Medina, R., Wing, S. S., and Goldberg, A. L., 1995, Increase in levels of polyubiquitin and proteasome mRNA in skeletal muscle during starvation and denervation atrophy, Biochem. J. 307:631–637.

    PubMed  CAS  Google Scholar 

  • Mehlen, P., Kretz-Remy, C., Preville, X., and Arrigo, A.-P., 1996, Human hsp27, Drosophila hsp27 and human alphaB-crystallin expression-mediated increase in glutathione is essential for the protective activity of these proteins against TNFalpha-induced cell death, EMBO J. 15:2695–2706.

    PubMed  CAS  Google Scholar 

  • Migheli, A., Autilio-Gambetti, L., Gambetti, P., Mocellini, C., Vigliani, M. C., and Schiffer, D., 1990, Ubiquitinated filamentous inclusions in spinal cord of patients with motor neuron disease, Neurosci. Lett. 114:5–10.

    Article  PubMed  CAS  Google Scholar 

  • Migheli, A., Attanasio, A., Vigliani, M. C., and Schiffer, D., 1991, Dystrophie neurites around amyloid plaques of human patients with Gerstmann-Straussler-Scheinker disease contain ubiquitinated inclusions, Neurosci. Lett. 121:55–58.

    Article  PubMed  CAS  Google Scholar 

  • Migheli, A., Attanasio, A., Pezzulo, T., Gullotta, F., Giordana, M. T., and Schiffer, D., 1992, Age-related ubiquitin deposits in dystrophic neurites: An immunoelectron microscopic study, Neuropathol. Appl. Neurobiol. 18:3–11.

    Article  PubMed  CAS  Google Scholar 

  • Mitch, W. E., 1995, Cellular mechanisms of catabolism activated by metabolic acidosis, Blood Purification 13:368–374.

    Article  PubMed  CAS  Google Scholar 

  • Mitch, W. E., 1996, Metabolic acidosis stimulates protein metabolism in uremiae, Miner Electrol. Metab. 22:62–65.

    CAS  Google Scholar 

  • Mitch, W. E., Medina, R., Grieber, S., May, R. C., England, B. K., Price, S. R., Bailey, J. L., and Goldberg, A. L., 1994, Metabolic acidosis stimulates muscle protein degradation by activating the adenosine triphosphate-dependent pathway involving ubiquitin and proteasomes, J. Clin. Invest. 93:2127–2133.

    Article  PubMed  CAS  Google Scholar 

  • Mori, H., Kondo, J., and Ihara, Y., 1987, Ubiquitin is a component of paired helical filaments in Alzheimer’s disease, Science 235:1641–1644.

    Article  PubMed  CAS  Google Scholar 

  • Morimoto, T., Ide, T., Ihara, Y., Tamura, A., and Kirino, T., 1996, Transient ischemia depletes free ubiquitin in the gerbil hippocampal CA1 neurons, Am. J. Pathol. 148:249–257.

    PubMed  CAS  Google Scholar 

  • Morishima-Kawashima, M., and Ihara, Y., 1994, Posttranslational modifications of tau in paired helical filaments, Dementia 5:282–288.

    Google Scholar 

  • Murayama, S., Mori, H., Ihara, Y., Bouldin, T. W., Suzuki, K., and Tomonaga, M., 1990a, Immunocytochemical and ultrastructural studies of lower motor neurons in amyotrophic lateral sclerosis, Ann. Neurol. 27:137–148.

    Article  PubMed  CAS  Google Scholar 

  • Murayama, S., Mori, H., Ihara, Y., and Tomonaga, M., 1990b, Immunocytochemical and ultrastructural studies of Pick’s disease, Ann. Neurol. 27:394–405.

    Article  PubMed  CAS  Google Scholar 

  • Narasimhan, J., Potter, J. L., and Haas, A. L., 1996, Conjugation of the 15-kDa interferon-induced ubiquitin homolog is distinct from that of ubiquitin, J. Biol. Chem. 271:324–330.

    Article  PubMed  CAS  Google Scholar 

  • Nicholl, I. D., and Quinlan, R. A., 1994, Chaperone activity of alpha-crystallins modulates intermediate filament assembly, EMBO J. 13:945–953.

    PubMed  CAS  Google Scholar 

  • Noga, M., and Hayashi, T., 1996, Ubiquitin gene expression following transient forebrain ischemia, Mol. Brain Res. 36:261–267.

    Article  PubMed  CAS  Google Scholar 

  • Okada, M., Miyake, T., Kitamura, T., Kawasaki, K., and Mizushima, Y., 1994, Anti-ubiquitin immunoreactivity associates with pyramidal cell death induced by intraventricular infusion of leupeptin in rat hippocampus, Neurosci. Res. 19:59–66.

    Article  PubMed  CAS  Google Scholar 

  • Olanow, C., 1990, Oxidative reactions in Parkinson’s disease, Neurology 40(Suppl. 3):32–37.

    PubMed  Google Scholar 

  • Orrenius, S., 1995, Apoptosis: Molecular mechanisms and implications for human disease, J. Intern. Med. 237:529–536.

    Article  PubMed  CAS  Google Scholar 

  • Papp, M. I., and Lantos, P. L., 1992, Accumulation of tubular structures in oligodendroglial and neuronal cells as the basic alteration in multiple system atrophy, J. Neurol. Sci. 107:172–182.

    Article  PubMed  CAS  Google Scholar 

  • Papp, M. I., Kahn, J. E., and Lantos, P. L., 1989, Glial cytoplasmic inclusions in the CNS of patients with multiple system atrophy (striatonigral degeneration, olivopontocerebellar atrophy and Shy-Drager syndrome), J. Neurol. Sci. 94:79–100.

    Article  PubMed  CAS  Google Scholar 

  • Pappolla, M. A., Omar, R., and Saran, B., 1989, The ‘normal’ brain. ‘Abnormal’ ubiquitinilated deposits highlight an age-related protein change, Am. J. Pathol. 135:585–591.

    PubMed  CAS  Google Scholar 

  • Parag, H. A., Raboy, B., and Kulka, R. G., 1987, Effect of heat shock on protein degradation in mammalian cells: Involvement of the ubiquitin system, EMBO J. 6:55–61.

    PubMed  CAS  Google Scholar 

  • Perry, G., Friedman, R., Shaw, G., and Chau, V., 1987, Ubiquitin is detected in neurofibrillary tangles and senile plaque neurites of Alzheimer disease brains, Proc. Natl. Acad. Sci. USA 84:3033–3036.

    Article  PubMed  CAS  Google Scholar 

  • Perry, G., Kawai, M., Tabaton, M., Onorato, M., Mulvihill, P., Richey, P., Morandi, A., Connolly, J. A., and Gambetti, P., 1991, Neuropil threads of Alzheimer’s disease show a marked alteration of the normal cytoskeleton, J. Neurosci. 11:1748–1755.

    PubMed  CAS  Google Scholar 

  • Perry, R. H., Irving, D., Blessed, G., Fairburn, A., and Perry, K., 1990, Senile dementia of the Lewy body type: A clinically and neuropathologically distinct form of dementia in the elderly, J. Neurol. Sci. 95:119–139.

    Article  PubMed  CAS  Google Scholar 

  • Price, S. R., England, B. K., Bailey, J. L., Van Vreede, K., and Mitch, W. E., 1994, Acidosis and glucocorticoids concomitantly increase ubiquitin and proteasome subunit mRNAs in rat muscle, Am. J. Physiol. 267:C955–960.

    PubMed  CAS  Google Scholar 

  • Price, S. R., Bailey, J. L., and England, B. K., 1996, Necessary but not sufficient: The role of glucocorticoids in the acidosis-induced increase in levels of mRNAs encoding proteins of the ATP-dependent proteolytic pathway in rat muscle, Miner. Electrol. Metab. 22:72–75.

    CAS  Google Scholar 

  • Rock, K. L., Rothstein, L., Clark, K., Stein, R., Dick, L., Hwang, D., and Goldberg, A. L., 1994, Inhibitors of the proteasome block the degradation of most cell proteins and the generation of peptides presented on MHC class 1 molecules, Cell 78:761–771.

    Article  PubMed  CAS  Google Scholar 

  • Rosen, D. R., Siddique, T., Patterson, D., Figlewicz, D. A., Sapp, P., Hentati, A., Donaldson, D., Goto, J., O’Regan, J. P., and Deng, H. X., 1993, Mutations in Cu/Zn Superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis, Nature 362:59–62.

    Article  PubMed  CAS  Google Scholar 

  • Schapira, A. H., 1993, Mitochondrial complex I deficiency in Parkinson’s disease, Adv. Neurol. 60:288–291.

    PubMed  CAS  Google Scholar 

  • Schapira, A. H., 1994, Evidence for mitochondrial dysfunction in Parkinson’s disease—A critical appraisal, Mov. Disord. 9:125–138.

    Article  PubMed  CAS  Google Scholar 

  • Schiffer, D., Autilio-Gambetti, L., Chio, A., Gambetti, P., Giordana, M. T., Gullotta, F., Migheli, A., and Vigliani, M. C., 1991, Ubiquitin in motor neuron disease: Study at the light and electron microscope, J. Neuropathol. Exp. Neurol. 50:463–473.

    Article  PubMed  CAS  Google Scholar 

  • Schmidt, M. L., Murray, J. M., and Trojanowski, J. Q., 1993, Continuity of neuropil threads with tangle-bearing and tangle-free neurons in Alzheimer disease cortex. A confocal laser scanning microscopy study, Mol. Chem. Neuropathol. 18:299–312.

    Article  PubMed  CAS  Google Scholar 

  • Schwartz, A. L., Brandt, R. A., Geuze, H., and Ciechanover, A., 1992, Stress-induced alterations in autophagic pathway: Relationship to ubiquitin system, Am. J. Physiol. 262:C1031–1038.

    PubMed  CAS  Google Scholar 

  • Schwartz, L. M., Myer, A., Kosz, L., Engelstein, M., and Maier, C., 1990, Activation of polyubiquitin gene expression during developmentally programmed cell death, Neuron 5:409–411.

    Article  Google Scholar 

  • Schweitzer, J. B., Park, M. R., Einhaus, S. L., and Robertson, J. T., 1993, Ubiquitin marks the reactive swellings of diffuse axonal injury, Acta Neuropathol. 85:503–507.

    Article  PubMed  CAS  Google Scholar 

  • Shang, F., and Taylor, A., 1995, Oxidative stress and recovery from oxidative stress are associated with altered ubiquitin conjugating and proteolytic activities in bovine lens epithelial cells, Biochem. J. 307:297–303.

    PubMed  CAS  Google Scholar 

  • Sherriff, F. E., Joachim, C. L., Squier, M. V., and Esiri, M. M., 1995, Ubiquitinated inclusions in inclusion-body myositis patients are immunoreactive for cathepsin D but not beta-amyloid, Neurosci. Lett. 194:37–40.

    Article  PubMed  CAS  Google Scholar 

  • Sisodia, S. S., and Price, D. L., 1995, Role of the beta-amyloid protein in Alzheimer’s disease, FASEB J. 9:366–370.

    PubMed  CAS  Google Scholar 

  • Takada, K., Nasu, H., Hibi, N., Tsukada, Y., Ohkawa, K., Fujimuro, M., Sawada, H., and Yokosawa, H., 1995, Immunoassay for the quantification of intracellular multi-ubiquitin chains, Eur. J. Biochem. 233:42–47.

    Article  PubMed  CAS  Google Scholar 

  • Takayanagi, K., Dawson, S., Reynolds, S. E., and Mayer, R. J., 1996, Specific developmental changes in the regulatory subunits of the 26S proteasome in intersegmental muscles preceding eclosion in Manduca sexta, Biochem. Biophys. Res. Commun., 228:517–523.

    Article  PubMed  CAS  Google Scholar 

  • Tamaoka, A., Mizusawa, H., Mori, H., and Shoji, S., 1995, Ubiquitinated alpha B-crystallin in glial cytoplasmic inclusions from the brain of a patient with multiple system atrophy, J. Neurol. Sci. 129:192–198.

    Article  PubMed  CAS  Google Scholar 

  • Temparis, S., Asensi, M., Taillandier, D., Aurousseau, E., Larbaud, D., Obled, A., Bechet, D., Ferrara, M., Estrela, J. M., and Attaix, D., 1994, Increased ATP-ubiquitin-dependent proteolysis in skeletal muscles of tumor-bearing rats, Cancer Res. 54:5568–5573.

    PubMed  CAS  Google Scholar 

  • Thompson, C. B., 1995, Apoptosis in the pathogenesis and treatment of disease, Science 267:1456–1462.

    Article  PubMed  CAS  Google Scholar 

  • Thompson, H. S., and Scordilis, S. P., 1994, Ubiquitin changes in human biceps muscle following exercise-induced damage, Biochem. Biophys. Res. Commun. 204:1193–1198.

    Article  PubMed  CAS  Google Scholar 

  • Thompson, R. J., Doran, J. F., Jackson, P., Dhillon, A. P., and Rode, J., 1983, PGP 9.5—A new marker for vertebrate neurons and neuroendocrine cells, Brain Res. 278:224–228.

    Article  PubMed  CAS  Google Scholar 

  • Tiao, G., Fagan, J. M., Samuels, N., James, J. H., Hudson, K., Lieberman, M., Fischer, J. E., and Hasselgren, P. O., 1994, Sepsis stimulates nonlysosomal, energy-dependent proteolysis and increases ubiquitin mRNA levels in rat skeletal muscle, J. Clin. Invest. 94:2255–2264.

    Article  PubMed  CAS  Google Scholar 

  • Tiao, G., Fagan, J., Roegner, V., Lieberman, M., Wang, J. J., Fischer, J. E., and Hasselgren, P. O., 1996, Energy-ubiquitin-dependent muscle proteolysis during sepsis in rats is regulated by glucocorticoids, J. Clin. Invest. 97:339–348.

    Article  PubMed  CAS  Google Scholar 

  • Tolnay, M., and Probst, A., 1995, Frontal lobe degeneration: Novel ubiquitin-immunoreactive neurites within frontotemporal cortex, Neuropathol. Appl. Neurobiol. 21:492–497.

    Article  PubMed  CAS  Google Scholar 

  • Trojanowski, J. Q., Shin, R. W., Schmidt, M. L., and Lee, V. M., 1995, Relationship between plaques, tangles, and dystrophic processes in Alzheimer’s disease, Neurobiol. Aging 16:335–340; discussion 341-345.

    Article  PubMed  CAS  Google Scholar 

  • Tsuda, T., Munthasser, S., Fraser, P. E., Percy, M. E., Rainero, I., Vaula, G., Pinessi, L., Bergamini, L., Vignocchi, G., and McLachlan, D. R., 1994, Analysis of the functional effects of a mutation in SOD1 associated with familial amyotrophic lateral sclerosis, Neuron 13:727–736.

    Article  PubMed  CAS  Google Scholar 

  • Tsujinaka, T., Fujita, J., Ebisui, C., Yano, M., Kominami, E., Suzuki, K., Tanaka, K., Katsume, A., Ohsugi, Y., Shiozaki, H., and Monden, M., 1996, Interleukin 6 receptor antibody inhibits muscle atrophy and modulates proteolytic systems in interleukin 6 transgenic mice, J. Clin. Invest. 97:244–249.

    Article  PubMed  CAS  Google Scholar 

  • Tsuzuki, K., Fukatsu, R., Takamaru, Y., Yoshida, T., Mafune, N., Kobayashi, K., Fujii, N., and Takahata, N., 1995, Co-localization of amyloid-associated proteins with amyloid beta in rat soleus muscle in chloroquine-induced myopathy: A possible model for amyloid beta formation in Alzheimer’s disease, Brain Res. 699:260–265.

    Article  PubMed  CAS  Google Scholar 

  • Uney, J. B., Anderton, B. H., and Thomas, S. M., 1993, Changes in heat shock protein 70 and ubiquitin mRNA levels in C1300 N2A mouse neuroblastoma cells following treatment with iron, J. Neurochem. 60:659–665.

    Article  PubMed  CAS  Google Scholar 

  • Voisin, L., Breuille, D., Combaret, L., Pouyet, C., Taillandier, D., Aurousseau, E., Obled, C., and Attaix, D., 1996, Muscle wasting in a rat model of long-lasting sepsis results from the activation of lysosomal, Ca2+-activated, and ubiquitin-proteasome proteolytic pathways, J. Clin. Invest. 97:1610–1617.

    Article  PubMed  CAS  Google Scholar 

  • Vonsattel, J. P., Myers, R. H., Stevens, T. J., Ferrante, R. J., Bird, E. D., and Richardson, E. J., 1985, Neuropathological classification of Huntington’s disease, J. Neuropathol. Exp. Neurol. 44:559–577.

    Article  PubMed  CAS  Google Scholar 

  • Wilkinson, K. D., 1994, Cellular roles of ubiquitin, in Heat Shock Proteins in the Nervous System (R. J. Mayer and I. Brown, eds.), pp. 192–234, Academic Press, San Diego.

    Google Scholar 

  • Wilkinson, K. D., Lee, K. M., Deshpande, S., Duerksen, H. P., Boss, J. M., and Pohl, J., 1989, The neuron-specific protein PGP 9.5 is a ubiquitin carboxyl-terminal hydrolase, Science 246:670–673.

    Article  PubMed  CAS  Google Scholar 

  • Wilson, P. O., Barber, P. C., Hamid, Q. A., Power, B. F., Dhillon, A. P., Rode, J., Day, I. N., Thompson, R. J., and Polak, J. M., 1988, The immunolocalization of protein gene product 9.5 using rabbit polyclonal and mouse monoclonal antibodies, Br. J. Exp. Pathol. 69:91–104.

    PubMed  CAS  Google Scholar 

  • Wing, S. S., and Goldberg, A. L., 1993, Glucocorticoids activate the ATP-ubiquitin-dependent proteolytic system in skeletal muscle during fasting, Am. J. Physiol. 264:E668–676.

    PubMed  CAS  Google Scholar 

  • Wing, S. S., Haas, A. L., and Goldberg, A. L., 1995, Increase in ubiquitin-protein conjugates concomitant with the increase in proteolysis in rat skeletal muscle during starvation and atrophy denervation, Biochem. J. 307:639–645.

    PubMed  CAS  Google Scholar 

  • Wong, P., Pardo, C., Borchelt, D., Lee, M., Copeland, N., Jenkins, N., Sisodia, S., Cleveland, D., and Price, D., 1995, An adverse property of a familial ALS-linked SOD1 mutation causes motor neuron disease characterized by vacuolar degeneration of mitochondria, Neuron 14:1105–1116.

    Article  PubMed  CAS  Google Scholar 

  • Yasuhara, O., Kawamata, T., Aimi, Y., McGeer, E. G., and McGeer, P. L., 1994, Two types of dystrophic neurites in senile plaques of Alzheimer disease and elderly non-demented cases, Neurosci. Lett. 171:73–76.

    Article  PubMed  CAS  Google Scholar 

  • Yee, W. M., Frim, D. M., and Isacson, O., 1993, Relationships between stress protein induction and NMDA-mediated neuronal death in the entorhinal cortex, Exp. Brain Res. 94:193–202.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Mayer, R.J., Landon, M., Lowe, J. (1998). Ubiquitin and the Molecular Pathology of Human Disease. In: Peters, JM., Harris, J.R., Finley, D. (eds) Ubiquitin and the Biology of the Cell. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-1922-9_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-1922-9_15

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-1924-3

  • Online ISBN: 978-1-4899-1922-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics