Skip to main content

Midline Subcortical Structures for Transhemispheric Ictal and Interictal Transmission

  • Chapter
Epilepsy and the Corpus Callosum 2

Part of the book series: Advances in Behavioral Biology ((ABBI,volume 45))

Abstract

Current understanding of the fundamental mechanisms of epilepsy is largely based on experimental animal studies. In these studies, the intrinsic difference between chronic epileptic brain and intact non-epileptic brain must be considered. The use of normal brain is important for understanding the capacity of cerebral structures to produce electroclinical manifestations of epilepsy. However, chronic or acquired epileptic brain in animal models such as kindling has now been shown to be significantly different from normal brain in terms of synaptic function with certain alteration of morphology.1 The presence of comparable morphological changes has also been confirmed in temporal lobe specimens removed for therapeutic purposes in medically refractory epilepsy. 2–7 To study the pathophysiology of epilepsy, it would therefore be desirable to use a chronic animal model having a potential of developing a recurrent spontaneous seizure with persistent epileptogenic susceptibility either acquired or genetically dictated. In this regard, kindling8 is an ideal model of partial epilepsy with secondarily generalized seizures. Kindling causes permanent reorganization of brain function leading to spontaneous emission of partial or generalized seizures.9–11 In this model, interaction of acquired and genetically dictated factors may be studied by comparing the pattern and outcome of kindling between animal species with or without predisposition to epileptic seizures such as Senegalese baboons, Papio papio and Rhesus monkeys, respectively.12,13

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. T. Sutula, H. Xiao-Xian, I. Cavazos, and G. Scott, Synaptic reorganization in the hippocampus induced by abnormal functional activity, Science 239: 1147–1150 (1988).

    Article  PubMed  CAS  Google Scholar 

  2. N.C. Delanerolle, J. H. Kim, R.J. Robbins, and D. D. Spencer, Hippocampal interneuron loss and plasticity in human temporal lobe epilepsy, Brain Res. 495: 387–395 (1987).

    Article  Google Scholar 

  3. T.L. Babb, W.R. Kupfer, and J.K. Pretorius, Recurrent excitatory circuits of “sprouted” mossy fibers into the fascia dentata of human hippocampal epilepsy, Epilepsia 29: 674 (1988).

    Google Scholar 

  4. T.K. Babb, W.R. Kupfer, and J.K. Pretorius, Synaptic reorganization of mossy fibers into inner molecular layer in human epileptic fascia dentata, Soc. Neurosci. Abstr. 14: 881 (1988).

    Google Scholar 

  5. A. Repressa, O. Robain, E. Tremblay, and Y. Ben-Ari, Hippocampal plasticity in childhood epilepsy, Neurosci. Lett. 99: 351–355 (1989).

    Article  Google Scholar 

  6. C.R. Houser, J.E. Miyashiro, R.E. Swartz, G.O. Walsh, J.R Rich, and A.V. DelgadoEscueta, Altered patterns of dynorphic immunoreactivity suggest mossy fiber reorganization in human hippocampal epilepsy, J. Neurosci. 10 (1): 267–82 (1990).

    PubMed  CAS  Google Scholar 

  7. T. Sutula, G. Cascino, J. Cavazos, I. Parada, and L. RamiRez, Mossy fiber synaptic reorganization in the epileptic human temporal lobe, Ann. Neurol. 26: 321330 (1989).

    Google Scholar 

  8. G.V. Goddard, D.C. McIntyre, and C.K. Leech, A permanent change in brain function resulting from electrical stimulation, Exp. Neurol. 25: 295–330 (1969).

    Article  PubMed  CAS  Google Scholar 

  9. J.A. Wada, M. Sato, and M.E. Corcoran, Persistent seizure susceptibility and recurrent spontaneous seizures in kindled cats, Epilepsia 15: 464–478 (1974).

    Google Scholar 

  10. J. A. Wada, T. Osawa, and T. Mizoguchi, Recurrent spontaneous seizure state induced by prefrontal kindling in Senegalese baboons, Papio papio, Can. J. Neurol. Sci. 2: 447–492 (1975).

    Google Scholar 

  11. J.A. Wada, and T. Osawa, Spontaneous recurrent generalized seizure state induced by daily amygdaloid stimulation in Senegalese baboons, Papio papio, Neurology 26 (3): 273–286 (1976).

    Article  PubMed  CAS  Google Scholar 

  12. J.A. Wada, T. Mizoguchi, and T. Osawa, Secondarily generalized convulsive seizure induced in rhesus monkeys, Neurology 28: 1026–1036 (1978).

    Article  PubMed  CAS  Google Scholar 

  13. J.A. Wada, Clinical relevance of kindling: species, brain sites and seizure susceptibility, in: “Limbic Mechanisms,” Livingston and Hornykiewicz, eds., Plenum Press, New York (1978).

    Google Scholar 

  14. J. Musgrave and P. Gloor, The role of the corpus callosum in bilateral interhemispheric synchrony of spike and wave discharge in feline generalized penicillin epilepsy, Epilepsia 21: 369–378 (1980).

    Article  PubMed  CAS  Google Scholar 

  15. J.A. Kusske and J.L. Rush, Corpus callosum and propagation of afterdischarge to contralateral cortex and thalamus, Neurology 28: 905–912 (1978).

    Article  PubMed  CAS  Google Scholar 

  16. E.M. Marcus, Generalized seizure models and the corpus callosum, in: “Epilepsy and the Corpus Callosum,” A.G. Reeves, ed., Plenum Press, New York (1985).

    Google Scholar 

  17. J.A. McCaughran, Jr., The role of forebrain commissures in kindled seizure development, in: “Epilepsy and the Corpus Callosum,” A.G. Reeves, ed., Plenum Press, New York (1985).

    Google Scholar 

  18. J.A. Wada and S. Komai, Effect of anterior 2/3 callosal bisection upon bisymmetrical and bisynchronous generalized convulsions kindled from amygdala in epileptic baboon, Papio papio, in: “Epilepsy and the Corpus Callosum,” A.G. Reeves, ed., Plenum Press, New York (1985).

    Google Scholar 

  19. J.A. Wada and M. Sato, Generalized convulsive seizure state induced by daily electrical stimulation of the amygdala in split brain cats, Epilepsia 16: 417–430 (1975).

    Article  PubMed  CAS  Google Scholar 

  20. T. Hiyoshi and J.A. Wada, Feline agenesis of the corpus callosum, Epilepsia 28 (4): 395–398 (1987).

    Article  PubMed  CAS  Google Scholar 

  21. J.A. Wada, Anterior 2/3 Callosal bisection: comparative observations in animals and man, in: ‘Fundamental Mechanisms of Human Brain Function,“ J. Engel Jr. et al., eds., Raven Press, New York (1987).

    Google Scholar 

  22. J.A. Wada and T. Mizoguchi, Effect of forebrain bisection upon amygdaloid kindling in epileptic baboon, Papio papio, Epilepsia 25(3):278–287.

    Google Scholar 

  23. R.C. Collins, C. Kennedy, L. Sokoloff, and F. Plum, Metabolic anatomy of focal motor seizure, Arch. Neurol. 33: 536–542 (1976).

    Article  PubMed  CAS  Google Scholar 

  24. K. Ono, K. Mori, H. Baba, K. Seki, and J.A. Wada, A new chronic model of partial onset generalized seizure induced by low frequency cortical stimulation: its relationship to the kindling phenomenon, in: “Kindling 3, ” J.A. Wada, ed., Raven Press, New York (1986).

    Google Scholar 

  25. D.C. McIntyre, Split-brain rat: transfer and interference of kindled amygdala convulsions, in: “Kindling,” J.A. Wada, ed., Raven Press, New York (1975).

    Google Scholar 

  26. E.G. Jones and R.Y. Leavitt, Retrograde axonal transport and the demonstration of non-specific projections to the cerebral cortex and striatum from thalamic intralaminar nuclei in the rat, cat and monkey, J. Comp. Neurol. 154: 349–378 (1974).

    Article  PubMed  CAS  Google Scholar 

  27. G. Macchi, A. Quattrini, P. Chinzari, G. Marchesi, and G. Capocchi, Quantitative data on cell loss and cellular atrophy of intralaminar nuclei following cortical and subcortical lesions, Brain Res. 89: 43–59 (1975).

    CAS  Google Scholar 

  28. G. Macchi, M. Bentivoglio, C. D’Atena, P. Rossini, and E. Tempesta, The cortical projections of the thalamic intralaminar nuclei restudied by means of the HRP retrograde axonal transport, Neurosci. Lett. 4: 121–126 (1977).

    Article  PubMed  CAS  Google Scholar 

  29. K. Niimi, N. Niimi, and Y. Okada, Thalamic afferents to the limbic cortex in the cat studied with the method of retrograde axional transport of horseradish peroxidase, Brain Res. 145: 225–238 (1978).

    Article  PubMed  CAS  Google Scholar 

  30. K. Niimi, H. Matsuoka, T. Aisaki, and Y. Okada, Thalamic afferents to the prefrontal cortex in the cat traced with horseradish peroxidase, J. Hirnforsch. 22: 221–241 (1981).

    PubMed  CAS  Google Scholar 

  31. R.T. Robertson and S.S. Kaitz, Thalamic connections with limbic cortex. 1. Thalamocortical projections, J. Comp. Neurol. 195: 501–525 (1981).

    Article  PubMed  CAS  Google Scholar 

  32. M.E. Scheibel and A.B. Scheibel, Structural organization of nonspecific thalamic nuclei and their projection towards cortex, Brain Res. 6: 60–94 (1967).

    Article  PubMed  CAS  Google Scholar 

  33. H. Kuenzle, Thalamic projections from the precentral motor cortex in Macaca fascicularis, Brain Res. 105: 253–312 (1985).

    Google Scholar 

  34. M. Molinari, D. Minciacchi, M. Bentivoglio, and G. Macchi, Efferent fibers from the motor cortex terminate bilaterally in the thalamus of rats and cats, Exp. Brain Res. 57: 305–312 (1985).

    Article  PubMed  CAS  Google Scholar 

  35. G.T. Sakai and D. Tanaka, Jr., Contralateral corticothalamic projections from area 6 in the racoon, Brain Res. 299: 371–375 (1984).

    Article  PubMed  CAS  Google Scholar 

  36. N. Mori and J.A. Wada, Kindling of the massa intermedia of the thalamus in rats, Brain Res. 575: 148–150 (1992).

    Article  PubMed  CAS  Google Scholar 

  37. Y. Hirayasu and J.A. Wada, Convulsive seizures in rats induced by N-methyl-Daspartate injection into the massa intermedia, Brain Res. 577: 36–40 (1992).

    Article  PubMed  CAS  Google Scholar 

  38. 38. Y. Hirayasu and J.A. Wada, N-methyl-D-aspartate injection into the massa intermedia facilitates development of limbic kindling in rats, Epilepsia

    Google Scholar 

  39. ):965–970 (1992).

    Google Scholar 

  40. M. Ishibashi and J.A. Wada, Division of the massa intermedia has no effect on amygdaloid kindled seizure in cats, Epilepsia 31 (5): 632 (1990).

    Google Scholar 

  41. A. Wake and J.A. Wada, Transfer and interference in amygdaloid kindling in cats, J. Neurol. Sci. 4: 5–11 (1977).

    CAS  Google Scholar 

  42. T. Hiyoshi and J.A. Wada, Midline thalamic lesion and feline amygdaloid kindling. I. Effect of lesion placement prior to kindling, Electroenceph. Clin. Neurophysiol. 70: 325–338 (1988).

    Article  PubMed  CAS  Google Scholar 

  43. T. Hiyoshi and J.A. Wada, Midline thalamic lesion and feline amygdaloid kindling, II. effect cf lesion placement upon completion of primary site kindling, Electroenceph. Clin. NeurophysioL 70: 339–349 (1988).

    Article  PubMed  CAS  Google Scholar 

  44. Y. Ehara and J.A. Wada, Midline thalamus and amygdaloid kindling, in: “Kindling 4, ” J.A. Wada, ed., Plenum Press, New York (1990).

    Google Scholar 

  45. Y. Ehara and J.A. Wada, NMDA injection into the massa intermedia precipitates convulsive seizure, Epilepsia 30: 707 (1989).

    Google Scholar 

  46. S. Piredda and K. Gale, Role of excitatory amino acid transmission in the genesis of seizures elicited from the deep prepiriform cortex, Brain Res. 377: 205–210 (1986).

    CAS  Google Scholar 

  47. J.A. Wada, T. Nakashima, and Y. Kaneko, Forebrain bisection and feline amygdaloid kindling, Epilepsia 23: 521–530 (1982).

    Article  PubMed  CAS  Google Scholar 

  48. H. Fukuda, J.A. Wada, D. Riche, and R. Naquet, Role of the corpus callosum and hippocampal commissure on transfer phenomenon in amygdaloid-kindled cats, Exp. NeuroL 98: 189–197 (1987).

    Article  PubMed  CAS  Google Scholar 

  49. J.A. Wada, Secondary cerebral functional alterations examined in the kindling model of epilepsy, in: “Secondary Epileptogenesis,” A. Mayersdorf and R.P. Schmidt, eds., Raven Press, New York (1982).

    Google Scholar 

  50. E.G. Jones, Anatomy, development and physiology of the corpus callosum, in: “Epilepsy and the Corpus Callosum,” A.G. Reeves, ed., Plenum Press, New York (1985).

    Google Scholar 

  51. J.A. Wada and M. Sato, Generalized convulsive seizures induced by daily electrical stimulation of the amygdala in cats, Neurology 24: 565–574 (1974).

    Article  PubMed  CAS  Google Scholar 

  52. J.A. Wada and M. Sato, Effects of unilateral lesion in the midbrain reticular formation upon kindled amygdaloid convulsion in cats, Epilepsia 16: 693–697 (1975).

    Article  PubMed  CAS  Google Scholar 

  53. Y. Hirayasu and J.A. Wada, The effect of brain stem bisection prior to the amygdaloid kindling in rats, Brain Res. 610: 354–357 (1993).

    Article  PubMed  CAS  Google Scholar 

  54. R.F. Ackermann and J. Engel, Jr., Lesions of the interpeduncular nucleus retard development of amygdaloid-kindled seizures in rats, Neurosci. Abstr. 4: 139 (1978).

    Google Scholar 

  55. T. Hiyoshi, M. Seino, N. Kakegawa, T. Higashi, K. Yagi, and J.A. Wada, Evidence of secondary epileptogenesis in amygdaloid overkindled cats: electroclinical documentation of spontaneous seizures, Epilepsia 34 (3): 408–415 (1993).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media New York

About this chapter

Cite this chapter

Wada, J.A. (1995). Midline Subcortical Structures for Transhemispheric Ictal and Interictal Transmission. In: Reeves, A.G., Roberts, D.W. (eds) Epilepsy and the Corpus Callosum 2. Advances in Behavioral Biology, vol 45. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-1427-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-1427-9_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-1429-3

  • Online ISBN: 978-1-4899-1427-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics