Skip to main content

The Distribution and Community Structure of Megafauna at the Galapagos Rift Hydrothermal Vents

  • Chapter
Hydrothermal Processes at Seafloor Spreading Centers

Part of the book series: NATO Conference Series ((MARS,volume 12))

Abstract

The distributions of the twenty-two megafaunal species at the Galapagos Rift hydrothermal vents vary markedly with respect to the discharging warm water. Vent associated water temperature ranged to 14.72°C, substantially above the 2.01°C ambient temperature of the area. Because it is a conservative property, temperature is a general index of vent-water quality. Some animals (the vestimentiferan, limpets, clam, a shrimp, an anemone, and for the most part, the mussel) are limited to the mouths of vents, where the temperature is several degrees above ambient. Others (serpulid worm, a second anemone, galatheid crab, turid gastropod) are abundant around the vents, but avoid the vent openings and so never experience much more than a degree above ambient. A third group (the siphonophore, brachiopod, a third anemone, enteropneust, a shrimp, ophiuroid) remains at the periphery of the vent field where temperature is at most a few tenths of a degree above ambient. Some mobile species (vent fish, brachyuran crab, galatheid crab, amphi-pods) are most abundant at vent openings but range even into non-vent terrain. Among the taxa that are peripheral or at least avoid vent openings are species which also live in the vast nonvent milieu, but most vent field species are endemic. Conversely, most members of the nonvent environment are absent from vent fields. While vents are obviously a source of abundant nutrition, most deep-sea animals are probably not adapted to the elevated temperature and/or unusual chemistry. Some may be inhibited by interference competition. Those that are totally excluded must be especially sensitive because dilution at the periphery is high.

Chemoautotrophic bacteria form the base of the food chain. The largest portion of metazoan biomass thrives through symbiosis with an incorporated chemoautotrophic bacterial flora; these animals are most closely associated with vent openings. Others feed on suspended bacteria ejected from the vents, those that have settled out, or bacteria growing as a film on the substratum. Vent fields possess a well-developed plankton, but the extent to which they form an intermediate link is not known. Nor do we know the amount of photosynthetically derived plankton and detritus that is contributed via the thermally induced convection cell. The top of the food chain consists of scavengers, mostly malacostracan crustaceans, some of whom combine deposit feeding with carnivory. Oddly, fish are not important at this level.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ballard, R. D., and Grassle, J. F. 1979, Return to oases of the deep (strange world without sun). Natl. Geogr. 156: 680–703.

    Google Scholar 

  • Balss, H., 1955, Decapoda:Okologie, Bronns, H. G., and Klassen, U., Ordnungen des Tierreichs, Bd. 5, Abt. 1, Buch 7, Lief. 10: 1285–1367.

    Google Scholar 

  • Boss, K. J., and Turner, R. D., 1980, The giant clam from the Galapagos Rift, Calvntogena magnifica species novum, Malacologie, 20: 161–194.

    Google Scholar 

  • Cavanaugh, C. M., Gardiner, S. L., Jones, M. L., Jannasch, H. W., and Waterbury, J. B., 1981, Prokaryotic cells in the hydrothermal vent tube worm Riftia DachvDtila Jones: Possible chemoautotrophic symbionts, Science, 209: 340–342.

    Google Scholar 

  • Cavanaugh, C. M., 1983, Symbiotic chemoautotrophic bacteria in marine invertebrates from sulphide-rich habitats, Nature, 302: 58–61.

    Article  CAS  Google Scholar 

  • Cohen, D. M., and Haedrich, R. L., in press, The fish fauna of the Galapagos thermal vent region, Deep-Sea Res.

    Google Scholar 

  • Corliss, J. B. and Ballard, R. D. 1977, Oases of life in the cold abyss, Natl. Geogr., 152: 441–454.

    Google Scholar 

  • Corliss, J. B., Dymond, J., Gordon, L. I., Edmond, J. M., von Herzen, R. P., Ballard, R. D., Green, K., Williams, D., Bainbridge, A., Crane, K., and van Andel, T. H., 1979, Submarine thermal springs on the Galapagos Rift, Science, 203: 1073–1083.

    Article  CAS  Google Scholar 

  • Crane, K., and Ballard, R. D., 1980, The Galapagos Rift at 86°W: 4. Structure and morphology of hydrothermal fields and their relationship to the volcanic and tectonic processes of the rift valley, AL. Geonhvs Res., 85 (B3): 1443–1454.

    Article  Google Scholar 

  • Edmond, J. M., Measures, C., McDuff, R. E., Chan, L. H., Collier, R., Grant, B., Gordon, L. I., and Corliss, J. B., 1979a, Ridge crest hydrothermal activity and the balances of the major and minor elements in the ocean: The Galapagos data, Earth Planet. Sei. Lett., 46: 1–18.

    CAS  Google Scholar 

  • Edmond, J. M., Measures, C., Mangum, B., Grant, B., Sclater, F. R., Collier, R., Hudson, A., Gordon, L. I., and Corliss, J. B., 1979b, On the formation of metal-rich deposits at ridge crests, Earth Plant. Sei. Lett., 46: 19–30.

    Article  CAS  Google Scholar 

  • Enright, J. T., Newman, W. A., Hessler, R. R., and McGowan, J. A., 1981, Deep-ocean hydrothermal vent communities, Nature, 289: 219–221.

    Article  Google Scholar 

  • Fatton, E., Marien, G., Pachiaudi, C., Rio, M., and Roux, M., 1981, Fluctuations de l’aetivite des sources hydrothermales

    Google Scholar 

  • oceaniques (Pacifique Est, 21°N) enregistrees lors de la croissance des coquilles de Calvntogena maanifica (Lamellibranche, Vesicomyidae) par les isotopes stables du carbone et de l’oxygene, ç. R. Acad. Sei. Paris, 293(serie III):701–706.

    Google Scholar 

  • Felbeok, H., 1981, Chemoautotrophie potential of the hydrothermal vent tube worm,.iiftia °aehyntila Jones (Vestimentifera), Science, 209: 336–338.

    Article  Google Scholar 

  • Felbeck, H., and Somero, G. N., 1982, Primary productivity in deep-sea hydrothermal vent organisms: Roles of sulfide-oxidizing bacteria, Trends Biochem. Sei., 7: 201–204.

    CAS  Google Scholar 

  • Fretter, V., Graham, A., and McLean, J. H, 1981, The anatomy of the Galapagos Rift limpet, Neomnhalus fretterae, Malacoloaia, 21: 337–361.

    Google Scholar 

  • Grassle, J. F., Berg, C. J., Childress, J J., Grassle, J. P.

    Google Scholar 

  • Hessler, R. R., Jannasch, H. J., Karl, D. M., Lutz, R. A., Mickel, T. J., Rhoads, D. C., Sanders, H L., Smith, K. L., Somero, G. N., Turner, R. D., Tuttle, J. H., Walsh, P. J., and Williams, A. J., 1979, Galapagos ‘79: Initial findings of a deep-sea biological quest, Oceanus, 22 (2): 1–10.

    Google Scholar 

  • Grassle, J. F., Sanders, H. L., Hessler, R. R., Rowe, G. T., and McLellan, T., 1975, Pattern and zonation: a study of the bathyal megafauna using the research submersible Alvin, DeenSea Res., 22: 57–481.

    Google Scholar 

  • Hiatt, B., 1980, Sulfides instead of sunlight, Mosaic, 11(4):15–21. Hessler, R. R., and Wilson, G. D., 1983, The origin and biogeography of malacostracan crustaceans in the deep-sea, ju “Evolution, Time, and Space: The Emergence of the Biosphere,”

    Google Scholar 

  • R. W. Sims, J. H. Price, and P. E. S. Whalley, eds., Systematics Association Special Vol. 23: 227–254.

    Google Scholar 

  • Hyman, L. H., 1959 “The Invertebrates V: Smaller Coelomate Groups,” McGraw-Hill, New York.

    Google Scholar 

  • Jannasch, H. W, and Wirsen, C. 0., 1979, Chemosynthetic primary production at East Pacific sea floor spreading center, BioSci., 29: 592–598.

    Google Scholar 

  • Jannasch, H. W., and Wirsen, C. 0., 1981, Morphological survey of

    Google Scholar 

  • microbial mats near deep-sea thermal vents, Avvl. Environ. Microbiol., 41:528–538.

    Google Scholar 

  • Jones, M. L., 1981, Riftia oachvotila, a new genus, new species: The vestimentiferan worm from the Galapagos Rift geothermal vents (Pogonophora), Proc. Biol. Soc. Wash., 93:1295–1313.

    Google Scholar 

  • Karl, D. M., Wirsen, C. 0., and Jannasch, H. W., 1980, Deep-sea primary productivity at the Galapagos hydrothermal vents, Science, 207: 1345–1347.

    Google Scholar 

  • Killingley, J. S., Berger, W. H., Macdonald, K. C., and Newman, W. A., 1980, 0–18/0–16 variations in deep-sea carbonate shells from the Rise hydrothermal field, Nature, 288: 218–221.

    Google Scholar 

  • Lonsdale, P.,-1977, Clustering of suspension-feeding macrobenthos near abyssal hydrothermal vents at oceanic spreading centers, Deev-Sea Res., 24: 857–863.

    Google Scholar 

  • Lupton, J. E., Klinkhammer, G. P., Normark, W. R., Haymon, R., Macdonald, K. C., Weiss, R. F., and Craig, H., 1980, Helium-3 and

    Google Scholar 

  • manganese at the 21°N East Pacific Rise hydrothermal site, Earth Planet Sei. Lett., 50:115–127.

    Google Scholar 

  • McLean, J. H., 1981, The Galapagos Rift limpet Neomohalus: Relevance to understanding the evolution of a major Paleozoic-Mesozoic radiation, Malacologia, 21: 291–336.

    Google Scholar 

  • Mickel, T. J., and Childress, J. J., 1982a, Effects of temperature, pressure and oxygen concentration on the oxygen consumption

    Google Scholar 

  • rate of the hydrothermal vent crab Bathvograea thermvdron (Brachyura), Physiol Zool., 55:199–207.

    Google Scholar 

  • Mickel, T. J., and Childress, J. J., 1982b, Effects of pressure and temperature on the EKG and heart rate of the hydrothermal vent crab Bathyograea thermvdron (Brachyura), Biol. Bull., 162: 7082.

    Google Scholar 

  • Pugh, P. R., in press. Benthic siphonophores: A review of the family Rhodaliida, Phil. Trans Roy. Soc. London.

    Google Scholar 

  • Rau, G. H., 1981a, Hydrothermal vent clam and tube worm C-13/C-12: Further evidence of non-photosynthetic food sources, Science, 209: 338–340.

    Article  Google Scholar 

  • Rau, G. H., 1981b, Low N-15/N-14 in hydrothermal vent animals: Ecological implications, Nature, 289: 484–485.

    Article  CAS  Google Scholar 

  • Rau, G. H., and Hedges, J. I., 1979, Carbon-13 depletion in a hydrothermal vent mussel: Suggestion of a chemosynthetic food source, Science, 203: 648–649.

    Article  CAS  Google Scholar 

  • Smithey, W. M., Jr., and Hessler, R. R., in press, Megafaunal distribution at deep-sea hydrothermal vents: An integrated photographic approach, j: “Underwater Photography for Scientists,” Oxford University Press, London.

    Google Scholar 

  • Spiess, F. N., Macdonald, K. C., Atwater, T., Ballard, R., Carranza, A., Cordoba, D., Cox, C., Diaz Garcia, V. M., Francheteau, J., Guerrero, J., Hawkins, J., Haymon, R., Hessler, R., Juteau, T., Kastner, M., Larson, R., Luyendyk, B., Macdougall, J. D., Miller, S., Normark, W., Orcutt, J., and Ran-gin, C., 1980, East Pacific Rise: Hot springs and geophysical experiments, Science, 207: 1421–1433.

    Article  CAS  Google Scholar 

  • van Andel, and Ballard, R. 0., 1979, The Galapagos Rift at 86°W: 2. Volcanism, structure, and evolution of the rift valley,,L. Geophys Bgg., 84: 5390–5406.

    Google Scholar 

  • Williams, A. B., 1980, A new crab family from the vicinity of submarine thermal vents on the Galapagos Rift (Crustacea: Decapoda: Brachyura), Proc. Biol. Soc. Wash., 93: 443–472.

    Google Scholar 

  • Williams, A. B, and Chace, F. A., Jr., 1982, A new caridean shrimp of the family Bresiliidae from thermal vents of the Galapagos Rift,,j,. grunt. au., 2: 136–147.

    Google Scholar 

  • Zarenkov, N. A., 1969, Decapoda, in “Biology of the Pacific Ocean, Part II, The Deep-Sea Bottom Fauna,” L. A. Zenkevich, ed., Vol. 7:79–82, U.S. Naval Oceanogr. Office, Washington, D. C. (translation).

    Google Scholar 

  • Zezina, O. N., 1965, Distribution of the deepwater brachiopod Pelagodiscus atlanticus (King), Oceanology, 5: 127–131.

    Google Scholar 

  • Zezina, O. N., 1969, Brachiopoda, ii “Biology of the Pacific Ocean, Part II,” The Deep-Sea Bottom Fauna,“ L. A. Zenkevich, ed., Vol. 7:100–102, U.S. Naval Oceanogr. Office, Washington, D. C. (translation).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Springer Science+Business Media New York

About this chapter

Cite this chapter

Hessler, R.R., Smithey, W.M. (1983). The Distribution and Community Structure of Megafauna at the Galapagos Rift Hydrothermal Vents. In: Rona, P.A., Boström, K., Laubier, L., Smith, K.L. (eds) Hydrothermal Processes at Seafloor Spreading Centers. NATO Conference Series, vol 12. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-0402-7_30

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-0402-7_30

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-0404-1

  • Online ISBN: 978-1-4899-0402-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics