Skip to main content

Part of the book series: NATO Conference Series ((MARS,volume 12))

Abstract

The primary production of organic carbon by chemosynthetic sulfur-oxidizing bacteria has been proposed to provide the base of the food chain for the extensive populations of animals found at hydrothermal vents at depths of about 2600 m. The oxidation of reduced inorganic compounds (such as H2S, S0, S2O 2−3 , NH +4 , NO 2−2 , Fe2+ and possibly Mn2+) as the source of energy for chemosynthesis is equivalent to the role of light in photosynthesis. Reported here is the present state of proof of this hypothesis which includes the work of many collaborating scientists. Epifluorescence microscopy and nucleotide determinations demonstrated substantial bacterial densities in the emitted vent waters. Multi-layered mats of unicellular bacteria were observed, often encased in heavy Mn/Fe deposits, as well as assemblages of Leucothrix/Thiothrix-like filaments and others resembling trichomes of apochlorotic cyanobacteria. Masses of Beggiatoa filaments were found on artificial surfaces deposited near the vents for 10 months. Species of the genera Thiomicrospira, Thiobacillus and Hyphomonas have been isolated and studied in detail. Furthermore, an anaerobically chemosynthetic, extremely thermophilic, methanogenic bacterium was isolated as well as a number of “Type I” methylotrophic bacteria oxidizing methane and methylamine. The gills of bivalves, collected from areas intermittently flushed with H2S-containing vent water and oxygenated ambient seawater, contained masses of bacteria showing high activities of sulfur metabolism and Calvin-Benson cycle enzymes. Likewise the “trophosome” tissue of the gutless tube worm Riftia was found to consist of procaryotic cells exhibiting ATP-generating and CO2-reducing activity. Thus, three locations of chemosynthetic production are proposed: (1) within the subsurface vent system at elevated temperatures, (2) in microbial mats in the immediate surrounding of the vents, and (3) in various symbiotic associations with invertebrates. It appears that the predominant chemosynthetic production, in combination with the most efficient transfer of organic carbon to the vent animals, occurs via symbiosis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  • Arp, A. G. and Childress, J. J., 1981, Blood function in the hydrothermal vent vestimentiferan tube worm. Science 213: 342–344.

    Article  CAS  Google Scholar 

  • Balch, W. E., Fox, G. E., Magrum, L. J., Woese, C. R. and Wolfe, R. S., 1979, Methanogens: reevaluation of a unique biological group. Microbiol. Rev. 43: 260–296.

    CAS  Google Scholar 

  • Baross, J. A., Lilley, M. D. and Gordon, L. I., 1982, Is the CH4, H2 and CO venting from submarine hydrothermal systems produced by thermophilic bacteria? Nature 298: 366–368.

    Article  CAS  Google Scholar 

  • Boss, K. J. and Turner, R. D., 1980. The giant white clam from the Galapagos Rift Calyptogena magnifica species novum. Malacologia 20: 161–194.

    Google Scholar 

  • Cavanaugh, C. M., Gardiner, S. L., Jones, M. L., Jannasch, H. W. and Waterbury, J. B., 1981. Procaryotic cells in the hydrothermal vent tube worm Riftia pachyptila Jones: possible chemoautotrophic symbionts. Science 213: 340–341.

    Article  CAS  Google Scholar 

  • Corliss, J. B., Dymond, J., Gordon, L. I., Edmond, J. M., von Herzen, R. P., Ballard, R. D., Green, K., Williams, D., Bainbridge, A., Crane K. and van Andel, T. H., 1979, Submarine thermal springs on the Galapagos Rift. Science 203: 1073–1083.

    Article  CAS  Google Scholar 

  • Corliss, J. B., Baross, J. A. and Hoffman, S. E., 1981, An hypothesis concerning the relationship between submarine hot springs and the origin of life on earth. Oceanol. Acta No. SP, 59–69.

    Google Scholar 

  • Davis, S. L. and Whittenbury, R., 1970, Fine structure of methane and other hydrocarbon utilizing bacteria. J. Gen. Microbiol. 61: 227–232.

    Article  Google Scholar 

  • De Bont, J. A. M., van Dijken, J. P. and Harder, W., 1981. Di-methyl sulphoxide and dimethyl sulphide as a carbon, sulphur and energy source for growth of Hyphomicrobium S. J. Gen. Microbiol. 127: 315–323.

    Google Scholar 

  • Deming, J. W., Tabor, P. S. and Colwell, R. R., 1981, Barophilic growth of bacteria from intestinal tracts of deep-sea invertebrates. Microb. Ecol. 7: 85–94.

    Article  Google Scholar 

  • Edmond, J. M., Corliss, J. B. and Gordon, L. I., 1979, Ridge crest-hydrothermal metamorphism at the Galapagos spreading center and reverse weathering, in: “Deep Drilling Results in the Atlantic Ocean: Ocean Crust,” M. Talwani, C. Harrison and

    Google Scholar 

  • D. Hayes eds., Amer. Geophys. Union, Washington, D.C., pp. 383–390.

    Google Scholar 

  • Ehrlich, H. 1982. Manganese oxidizing bacteria from a hydrothermally active area on the Galapagos Rift. Ecol. Bull. 35. In press.

    Google Scholar 

  • Enright, J. T., Newman, W. A., Hessler, R. R. and McGowan, J. A., 1981, Deep-ocean hydrothermal vent communities. Nature 289: 219–221.

    Article  Google Scholar 

  • Felbeck, H. 1981. Chemoautotrophic potentials of the hydrothermal vent tube worm, Riftia pachyptila (Vestimentifera). Science 213: 336–338.

    Article  CAS  Google Scholar 

  • Felbeck, H., Childress, J. J. and Somero, G. N., 1981, Calvin-Benson cycle and sulfide oxidation enzymes in animals from sulfide-rich habitats. Nature 293: 291–293.

    Article  CAS  Google Scholar 

  • Harwood, C. S., Jannasch, H. W. and Canale-Parole, E., 1982, An anaerobic spirochaete from deep sea hydrothermal vents. Ape. Environ. Microbiol. 44: 234–237.

    CAS  Google Scholar 

  • Heinen, W. and Lauwers, A. M., 1981, Growth of bacteria at 100°C and beyond. Arch. Microbiol. 129: 127–128.

    Article  Google Scholar 

  • Jannasch, H. W., 1983, Interactions between the carbon and sulfur cycles in the marine environment, in: “The Major Biochemical Cycles and Their Interactions,” B. Bolin and R. Cook, eds., Wiley, New York. In press.

    Google Scholar 

  • Jannasch, H. W. and Wirsen, C. O., 1979, Chemosynthetic primary production at East Pacific sea floor spreading centers. BioScience 29: 592–598.

    Article  CAS  Google Scholar 

  • Jannasch, H. W. and Wirsen, C. O., 1981, Morphological survey of microbial mats near deep-sea thermal vents. Appl. Environ. Microbiol. 41: 528–538.

    CAS  Google Scholar 

  • Jannasch, H. W., Wirsen, C. O. and Taylor, C. D., 1976, Undecompressed microbial populations from the deep sea. Appl. Environ. Microbiol. 32: 360–367.

    CAS  Google Scholar 

  • Jones, M. L., 1980, Riftia pachyptila, n. gen., n. sp., the vestimentiferan worm from the Galapagos Rift geothermal vents (Pogonophora)Proc. Biol. Soc. Wash. 93: 1295–1313.

    Google Scholar 

  • Jones, M. L., 1981, Riftia pachyptila Jones: observations on the vestimentiferan worm from the Galapagos Rift. Science 213: 333–336

    Article  CAS  Google Scholar 

  • Karl, D. M., 1980, Cellular nucleotide measurements and applica- tions in microbial ecology. Microbiol. Rev. 44: 739–796.

    CAS  Google Scholar 

  • Karl, D. M., Wirsen, C. O. and Jannasch, H. W., 1980, Deep-sea primary production at the Galapagos hydrothermal vents. Science 207: 1345–1347.

    Article  CAS  Google Scholar 

  • Kuenen, J. G. and Veldkamp, H., 1972, Thiomicrospira peloptila gen. n., sp. n., a new obligately chemolithotrophic colorless sulfur bacterium. Ant. van Leeuwen. 38: 241–256.

    Article  CAS  Google Scholar 

  • Leigh, J. A. and Jones, W. J., 1983, A new extremely thermophilic methanogen from a submarine hydrothermal vent. Am. Soc. Microbiol., 83rd Ann. Meetg., New Orleans.

    Google Scholar 

  • Lipmann, F., 1966, The Origins of Prebiological Systems, “Mir” (Moscow), pp. 261–271.

    Google Scholar 

  • Lister, C. R. B., 1977, Qualitative models of spreading center processes, including hydrothermal penetration. Tectonophysics 37: 203–218.

    Article  Google Scholar 

  • Liu, C. L., Hart, N. and Peck, H. D., 1982, Inorganic pyrophosphate: energy source for sulfate reducing bacteria of the genus Desulfotomaculum. Science 217: 363–364.

    Article  CAS  Google Scholar 

  • Lonsdale, P., 1977, Clustering of suspension-feeding macrobenthos near abyssal hydrothermal vents at oceanic spreading centers. Deep Sea Res. 24: 857–863.

    Article  Google Scholar 

  • Lonsdale, P. F., Bischoff, J. L., Burns, V. M., Kastner, M. and Sweeney, R. E., 1980, A high-temperature hydrothermal deposit on the seabed at a Gulf of California spreading center. Earth Planet. Sci. Lett. 49: 8–20.

    Article  CAS  Google Scholar 

  • Lupton, J. E., Klinkhammer, G., Normark, W., Haymon, R., Macdonald, K., Weiss, R. and Craig, H., 1980, Helium-3 and manganese at the 21°N East Pacific Rise hydrothermal site. Earth Planet. Sci. Lett. 50: 115–127.

    Article  CAS  Google Scholar 

  • Marquis, R. E. and Matsumura, P., 1978, Microbial life under pressure, in: “Microbial Life in Extreme Environments,” D. J. Kushner, ed., Academic Press, New York, pp. 105–158.

    Google Scholar 

  • Moore, R. L., 1981, The genera Hyphomicrobium, Pedomicrobium, and Hyphomonas, in: “The Prokaryotes,” M. P. Starr et al., eds., Springer Verlag, Berlin, pp. 480–487.

    Google Scholar 

  • Mottl, M. J., Holland, H. D. and Corr, R. F., 1979, Chemical exchange during hydrothermal alteration of basalt by seawater–II. Experimental results for Fe, Mn, and sulfur species. Geochim. Cosmochim. Acta 43: 869–884.

    Article  CAS  Google Scholar 

  • Rau, G. H., 1981, Hydrothermal vent clam and tube worm 13c/12c: further evidence of non-photosynthetic food source. Science 213: 338–340.

    Article  CAS  Google Scholar 

  • Ruby, E. G. and Jannasch, H. W., 1982, Physiological characteristics of Thiomicrospira sp. L-12 isolated from deep sea hydrothermal vents. J. Bacteriol. 149: 161–165.

    CAS  Google Scholar 

  • Ruby, E. G., Wirsen, C. O. and Jannasch, H. W., 1981, Chemolitho- trophic sulfur-oxidizing bacteria from the Galapagos Rift hydrothermal vents. Appl. Environ. Microbiol. 42: 317–324.

    CAS  Google Scholar 

  • Schmidt, J. M. and J. R. Swafford. 1981. The genus Seliberia. in: “The Prokaryotes,” M. P. Starr et al., eds., Springer Verlag, Berlin, pp. 516–519.

    Google Scholar 

  • Simoneit, B. R. T. and Lonsdale, P. F., 1982, Hydrothermal petroleum in mineralized mounds at the seabed of Guaymas Basin. Nature 295: 198–202.

    Article  CAS  Google Scholar 

  • Southward, A. J., Southward, E. C., Dando, P. R., Rau, G. H., Felbeck, H. and Flugel, H., 1981, Bacterial symbionts and low 13C/12C ratios in tissues of Pogonophora indicate unusual nutrition and metabolism. Nature 293: 616–620.

    Article  Google Scholar 

  • Spiess, F. N., MacDonald, K. C., Atwater, T., Ballard, R., Carranza, A., Cordoba, D., Cox, C., Diaz Garcia, V. M., Francheteau, J., Guerrero, J., Hawkins, J., Haymon, R., Hessler, R., Juteau, T., Kastner, M., Larson, R., Luyendyk, B., Macdougall, J. D., Miller, S., Normark, W., Orcutt, J. and Rangin, C., 1980, East Pacific Rise: Hot springs and geophysical experiments. Science 207: 1421–1433.

    Article  CAS  Google Scholar 

  • Stetter, K. O., 1982, Ultrathin mycelia-forming organisms from submarine volcanic areas having an optimum growth temperature of 105°C. Nature 300: 258–260.

    Article  Google Scholar 

  • Tuttle, J. H., Wirsen, C. O. and Jannasch, H. W., 1983, Microbial activities in the emitted hydrothermal vent waters of the Galapagos Rift vents. Mar. Biol. In press.

    Google Scholar 

  • Welhan, J. A. and Craig, H., 1979, Methane and hydrogen in East Pacific Rise hydrothermal fluid. Geophys. Res. Lett. 6: 829.

    Article  CAS  Google Scholar 

  • Wittenberg, J. B., Morris, R. J., Gibson, Q. H. and Jones, M. L., 1981, Hemoglobin kinetics of the Galapagos Rift vent tube worm Riftia pachyptila Jones (Pogonophora, Vestimentifera). Science 213: 344–346.

    Article  CAS  Google Scholar 

  • Yayanos, A., Dietz, A. S. and Van Boxtel, R., 1979, Isolation of a deep-sea barophilic bacterium and some of its growth characteristics. Science 205: 808–810.

    Article  CAS  Google Scholar 

  • Zillig, W., Schnabel, R., and Tu, J., 1982, The phylogeny of Archaebacteria, including novel anaerobic thermoacidophiles in the light of RNA polymerase structure. Naturwiss. 69: 197–204.

    Article  CAS  Google Scholar 

  • Zillig, W., Stetter, K. O., Schafer, W., Janekovic, D., Wunderl, S., Holz, I. and Palm, P., 1981, Thermoproteales: a novel type of extremely thermoacidophilic anaerobic archaebacteria isolated from Icelandic solfataras. Zbl. Bact. Hyg., I. Abt. Orig. C2: 205–227.

    CAS  Google Scholar 

  • ZoBell, C. E., 1968, Bacterial life in the deep sea. Bull. Misaki Mar. Biol. Inst. (Kyoto) 12: 77–96.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Springer Science+Business Media New York

About this chapter

Cite this chapter

Jannasch, H.W. (1983). Microbial Processes at Deep Sea Hydrothermal Vents. In: Rona, P.A., Boström, K., Laubier, L., Smith, K.L. (eds) Hydrothermal Processes at Seafloor Spreading Centers. NATO Conference Series, vol 12. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-0402-7_28

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-0402-7_28

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-0404-1

  • Online ISBN: 978-1-4899-0402-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics