Skip to main content

Near-Infrared Spectroscopy in Functional Activation Studies

Can NIRS Demonstrate Cortical Activation?

  • Chapter
Optical Imaging of Brain Function and Metabolism 2

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 413))

Abstract

Near infrared spectroscopy (NIRS) has recently been used in functional activation studies as a non-invasive tool to monitor changes in cerebral oxygenation in human adults1–6. If NIRS is to establish its place in functional brain research it must be proven that the changes monitored reflect the activation state of the cortex in response to a stimulus. This article gives an overview of the studies performed. On the basis of the reported findings and results from two studies by our own group7,8 a description of the typical NIRS response pattern over an activated cortical area is attempted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. B. Chance, Z. Zhuang, C. UnAh, C. Alter, and L. Lipton, Cognition-activated low-frequency modulation of light absorption in human brain, Proc. Natl. Acad. Sci. U. S. A. 90:3770–3774 (1993).

    Article  ADS  Google Scholar 

  2. G. Gratton, P.M. Corballis, E. Cho, M. Fabiani, and D.C. Hood, Shades of gray matter:noninvasive optical images of human brain responses during visual stimulation. Psychophysiology 32:505–509 (1995).

    Article  Google Scholar 

  3. G. Gratton, M. Fabiani, D. Friedman, M.A. Franceschini, S. Fantini, P. Corballis, and E. Gratton, Rapid changes of optical parameters in the human brain during a tapping task. Journal of Cognitive Neuroscience 7:4:446–456(1995).

    Article  Google Scholar 

  4. Y. Hoshi and M. Tamura, Detection of dynamic changes in cerebral oxygenation coupled to neuronal function during mental work in man, Neurosci. Lett. 150:5–8 (1993).

    Article  Google Scholar 

  5. J.H. Meek, C.E. Elwell, M.J. Khan, J. Romaya, J.S. Wyatt, D.T. Delpy, and S. Zeki, Regional changes in cerebral haemodynamics as a result of a visual stimulus measured by near infrared spectroscopy, Proc. R. Soc. Lond. B 261:351–356 (1995).

    Article  ADS  Google Scholar 

  6. A. Villringer, J. Planck, C. Hock, L. Schleinkofer, and U. Dirnagl, Near infrared spectroscopy (NIRS): a new tool to study hemodynamic changes during activation of brain function in human adults, Neurosci. Lett. 154:101–104(1993).

    Article  Google Scholar 

  7. H. Obrig, T. Wolf, C. Doge, J. Junge-Hülsing, U. Dirnagl, and A. Villringer, Adv. Exp. Med. Biol. (1995).(in press).

    Google Scholar 

  8. H. Obrig, C. Hirth, J.G. Junge-Hülsing, C. Doge, T. Wolf, A. Villringer, and U. Dirnagl, Cerebral oxygenation changes in response to motor stimulation, Journal of Applied Physiology (submitted).

    Google Scholar 

  9. F.F. Jobsis, Noninvasive, infrared monitoring of cerebral and myocardial oxygen sufficiency and circulatory parameters, Science 198:1264–1267 (1977).

    Article  ADS  Google Scholar 

  10. M. Cope and D.T. Delpy, System for long-term measurement of cerebral blood and tissue oxygenation on newborn infants by near infra-red transillumination, Med. Biol. Eng. Comput. 26:289–294 (1988).

    Article  Google Scholar 

  11. M. Tamura, O. Hazeki, S. Nioka, and B. Chance, In vivo study of tissue oxygen metabolism using optical and nuclear magnetic resonance spectroscopies, Annu. Rev. Physiol. 51:813–834 (1989).

    Article  Google Scholar 

  12. J.S. Wyatt, M. Cope, D.T. Delpy, S. Wray, and E.O. Reynolds, Quantification of cerebral oxygenation and haemodynamics in sick newborn infants by near infrared spectrophotometry, Lancet 2:1063–1066 (1986).

    Article  Google Scholar 

  13. D.T. Delpy, M. Cope, P. van der Zee, S. Arridge, S. Wray, and J. Wyatt, Estimation of optical pathlength through tissue from direct time of flight measurement, Phys. Med. Biol. 33:1433–1442 (1988).

    Article  Google Scholar 

  14. P. van der Zee and D.T. Delpy, Simulation of the point spread function for light in tissue by a Monte Carlo method, Adv. Exp. Med Biol. 215:179–191 (1987).

    Article  Google Scholar 

  15. B. Chance, J.S. Leigh, H. Miyake, D.S. Smith, S. Nioka, R. Greenfeld, M. Finander, K. Kaufmann, W. Levy, M. Young, and et al, Comparison of time-resolved and-unresolved measurements of deoxyhemoglobin in brain, Proc. Natl. Acad. Sci. U. S A. 85:4971–4975 (1988).

    Article  ADS  Google Scholar 

  16. P. van der Zee, M. Cope, S.R. Arridge, M. Essenpreis, L.A. Potter, A.D. Edwards, J.S. Wyatt, D.C. McCormick, S.C. Roth, E.O. Reynolds, and et al, Experimentally measured optical pathlengths for the adult head, calf and forearm and the head of the newborn infant as a function of inter optode spacing, Adv. Exp. Med. Biol. 316:143–153(1992).

    Article  Google Scholar 

  17. Y. Hoshi and M. Tamura, Dynamic multichannel near-infrared optical imaging of human brain activity, J. Appl. Physiol. 75:1842–1846 (1993).

    Google Scholar 

  18. Y. Hoshi, H. Onoe, Y. Watanabe, J. Andersson, M. Bergstrom, A. Lilja, B. Langstrom, and M. Tamura, Non-synchronous behavior of neuronal activity, oxidative metabolism and blood supply during mental tasks in man, Neurosci. Lett. 172:129–133 (1994).

    Article  Google Scholar 

  19. F. Okada, Y. Tokumitsu, Y. Hoshi, and M. Tamura, Gender-and handedness-related differences of forebrain oxygenation and hemodynamics, Brain Res. 601:337–342 (1993).

    Article  Google Scholar 

  20. F. Okada, Y. Tokumitsu, Y. Hoshi, and M. Tamura, Impaired interhemispheric integration in brain oxygenation and hemodynamics in schizophrenia, Eur. Arch. Psychiatry Clin. Neurosci. 244:17–25 (1994).

    Article  Google Scholar 

  21. F. Okada, Y. Tokumitsu, N. TAKAHASHI, Y. Hoshi, and M. Tamura, Region-dependent asymmetrical or symmetrical variations in the oxygenation and hemodynamics of the brain due to different mental stimuli, Brain Res. Cogn. Brain Res. 2:215–219 (1995).

    Article  Google Scholar 

  22. C.E. Cooper, S.J. Matcher, J.S. Wyatt, M. Cope, G.C. Brown, E.M. Nemoto, and D.T. Delpy, Near-infrared spectroscopy of the brain: relevance to cytochrome oxidase bioenergetics, Biochem. Soc. Trans. 22:974–980 (1994).

    Google Scholar 

  23. M.E. Raichle, W.R. Martin, P. Herscovitch, M.A. Mintun, and J. Markham, Brain blood flow measured with intravenous H2(15)O. II. Implementation and validation, J. Nucl. Med. 24:790–798 (1983).

    Google Scholar 

  24. A. Villringer and U. Dirnagl, Coupling of brain activity and cerebral blood flow — basis of functional neuroimaging, Cerebrovasc. Brain Metab. Rev. (1996).

    Google Scholar 

  25. P.T. Fox and M.E. Raichle, Focal physiological uncoupling of cerebral blood flow and oxidative metabolism during somatosensory stimulation in human subjects, Proc. Natl. Acad. Sci. U. S. A. 83:1140–1144 (1986).

    Article  ADS  Google Scholar 

  26. P.T. Fox, M.E. Raichle, M.A. Mintun, and C. Dence, Nonoxidative glucose consumption during focal physiologic neural activity, Science 241:462–464 (1988).

    Article  ADS  Google Scholar 

  27. K. Villringer, A. Villringer, S. Minoshima, S. Ziegler, M. Herz, S. Schuh-Hofer, H. Obrig, C. Hock, U. Dirnagl, and M. Schwaiger, Frontal brain activation in humans: a combined near infrared spectroscopy and positron emission tomography study. Soc. Neurosci. Abst. 20, 1:355:(1994).

    Google Scholar 

  28. O. Pryds, G. Greisen, and B. Friis Hansen, Acta Paediatr. Scand. 77:632–637 (1988).

    Article  Google Scholar 

  29. G.I. Mchedlishvili, Arterial behaviour and blood circulation in the brain., Plenum Press, New York, pp. 274–291 (1986).

    Google Scholar 

  30. K.K. Kwong, J.W. Belliveau, D.A. Chesler, I.E. Goldberg, R.M. Weisskoff, B.P. Poncelet, D.N. Kennedy, B.E. Hoppel, M.S. Cohen, R. Turner, and et al, Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation, Proc. Natl. Acad. Sci. U. S. A. 89:5675–5679 (1992).

    Article  ADS  Google Scholar 

  31. S. Ogawa, T.M. Lee, A.R. Kay, and D.W. Tank, Brain magnetic resonance imaging with contrast dependent on blood oxygenation, Proc. Natl. Acad. Sci. U. S. A. 87:9868–9872 (1990).

    Article  ADS  Google Scholar 

  32. J. Frahm, H. Bruhn, K.D. Merboldt, and W. Hanicke, Dynamic MR imaging of human brain oxygenation during rest and photic stimulation, J. Magn. Reson. Imaging 2:501–505 (1992).

    Article  Google Scholar 

  33. P.A. Bandettini, E.C. Wong, R.S. Hinks, R.S. Tikofsky, and J.S. Hyde, Time course EPI of human brain function during task activation, Magn. Reson. Med. 25:390–397 (1992).

    Article  Google Scholar 

  34. S.G. Kim, J. Ashe, A.P. Georgopoulos, H. Merkle, J.M. Ellermann, R.S. Menon, S. Ogawa, and K. Ugurbil, Functional imaging of human motor cortex at high magnetic field, J. Neumphysiol. 69:297–302 (1993).

    Google Scholar 

  35. R. Kawashima, K. Yamada, S. Kinomura, T. Yamaguchi, H. Matsui, S. Yoshioka, and H. Fukuda, Regional cerebral blood flow changes of cortical motor areas and prefrontal areas in humans related to ipsilateral and contralateral hand movement, Brain Res. 623:33–40 (1993).

    Article  Google Scholar 

  36. A. Kleinschmidt, H. Obrig, M. Requardt, K.D. Merboldt, U. Dirnagl, A. Villringer, and J. Frahm, Simultaneous recording of cerebral blood oxygenation changes during human brain activation by MRI and near-infrared spectroscopy. J. Cereb. Blood Flow Metab. (1996).

    Google Scholar 

  37. U. Lindauer, A. Villringer, and U. Dirnagl, Characterization of CBF response to somatosensory stimulation: model and influence of anesthetics, Am. J. Physiol. 264:H1223–8 (1993).

    Google Scholar 

  38. K.J. Friston, CD. Frith, P.F. Liddle, R.J. Dolan, A.A. Lammertsma, and R.S. Frackowiak, The relationship between global and local changes in PET scans, J. Cereb. Blood Flow Metab. 10:458–466 (1990).

    Article  Google Scholar 

  39. J. Frahm, K.D. Merboldt, W. Hanicke, A. Kleinschmidt, and H. Boecker, Brain or vein-oxygenation or flow? On signal physiology in functional MRI of human brain activation, NMR. Biomed. 7:45–53 (1994).

    Article  Google Scholar 

  40. A. Maki, Y. Yamashita, Y. Ito, E. Watanabe, Y. Mayanagi, and H. Koizumi, Spatial and temporal analysis of human motor activity using noninvasive NIR topography. Am. Assoc. Phys. Med. 22:12:1997–2005 (1995).

    Google Scholar 

  41. M. Tamura, M. Ishiki, H. Tachibana, Y. Kubo, and T. Tamura, Non-invasive monitoring of tissue oxygen metabolism by NIR laser spectrophotometry. Jpn. J. Artif. Organs 18:1573–1580 (1989).

    Google Scholar 

  42. S.J. Matcher, C.E. Elwell, C.E. Cooper, M. Cope, and D.T. Delpy, Performance comparison of several published tissue near-infrared spectroscopy algorithms. Anal. Biochem. 227:54–68 (1995).

    Article  Google Scholar 

  43. T. Kato, A. Kamei, S. Takashima, and T. Ozaki, Human visual cortical function during photic stimulation monitoring by means of near-infrared spectroscopy, J. Cereb. Blood Flow Metab. 13:516–520 (1993).

    Article  Google Scholar 

  44. C. Hock, F. Müllerspahn, S. Schuhhofer, M. Hofmann, U. Dirnagl, and A. Villringer, Age dependency of changes in cerebral hemoglobin oxygenation during brain activation: a near infrared spectroscopy study, J. Cereb. Blood Flow Metab. 15:1103–1108. (1995).

    Article  Google Scholar 

  45. Y. Shinohara, S. Takagi, N. Shinohara, F. Kawaguchi, Y. Itoh, Y. Yamashita, and A. Maki, Optical CT imaging of hemoglobin oxygen-saturation using dual-wave length time gate technique, Adv. Exp. Med. Biol. 333:43–46(1993).

    Article  Google Scholar 

  46. H. Steinmetz, G. Fürst, and B.U. Meyer, Craniocerebral topography within the international 10–20 system, Electroencephalogr. Clin. Neurophysiol. 72:499–506 (1989).

    Google Scholar 

  47. P. van der Zee, S.R. Arridge, M. Cope, and D.T. Delpy, The effect of optode positioning on optical path-length in near infrared spectroscopy of brain, Adv. Exp. Med. Biol. 277:79–84 (1990).

    Article  Google Scholar 

  48. Y. Hoshi, S. Mizukami, and M. Tamura, Dynamic features of hemodynamic and metabolic changes in the human brain during all-night sleep as revealed by near-infrared spectroscopy, Brain Res. 652:257–262 (1994).

    Article  Google Scholar 

  49. C. Hock, K. Villringer, F. Müller-Spahn, M. HOFMANN, S. Schuh-Hofer, H. Heekeren, U. Dirnagl, and A. Villringer, Near infrared spectroscopy in the diagnosis of Alzheimer’s disease., Annals of the New York Acadamy of Science (1996).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Obrig, H., Villringer, A. (1997). Near-Infrared Spectroscopy in Functional Activation Studies. In: Villringer, A., Dirnagl, U. (eds) Optical Imaging of Brain Function and Metabolism 2. Advances in Experimental Medicine and Biology, vol 413. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-0056-2_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-0056-2_13

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-0058-6

  • Online ISBN: 978-1-4899-0056-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics