Skip to main content

GABA Neurons and Their Role in Activity-Dependent Plasticity of Adult Primate Visual Cortex

  • Chapter
Primary Visual Cortex in Primates

Part of the book series: Cerebral Cortex ((CECO,volume 10))

Abstract

Since its identification more than 30 years ago (see Roberts, 1975), as a naturally occurring brain substance that inhibited neural activity, γ-aminobutyric acid (GABA) has become recognized as one of the major neurotransmitter agents of the mammalian central nervous system. The ubiquitous distribution of GABA neurons and GABA receptors and the demonstrable role of GABA in shaping, through inhibition, the stimulus—response properties of neurons at many levels of the central nervous system attest to its profound functional importance. In most of the major organized systems of the neuraxis, GABA can probably be regarded as occupying a status equal in importance to that of the excitatory amino acid transmitters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Akil, M., and Lewis, D. A., 1992, Differential distribution of parvalbumin-immunoreactive pericellular clusters of terminal boutons in developing and adult monkey neocortex, Exp. Neurol. 115: 239–249.

    Article  PubMed  CAS  Google Scholar 

  • Albus, K., and Wolf, W., 1984, Early post-natal development of neuronal function in the kitten’s visual cortex: A laminar analysis, J. Physiol. (London) 348: 153–185.

    CAS  Google Scholar 

  • Bartlet, J. E. A., 1951, A case of organized visual hallucinations in an old man with cataract, and their relation to the phenomenon of the phantom limb, Brain 74: 363–373.

    Article  PubMed  CAS  Google Scholar 

  • Benson, D. L., and Jones, E. G., 1991, Differential intraneuronal regulation of GAD and β-preprotachykinin mRNAs in monkey visual cortex following monocular deprivation, Soc. Neurosci. Abstr. 17: 115.

    Google Scholar 

  • Benson, D. L., Isackson, P. J., and Jones, E. G., 1990, In situ hybridization reveals VIP precursor mRNA-containing neurons in monkey and rat neocortex, Mol. Brain Res. 9: 169–174.

    Article  Google Scholar 

  • Benson, D. L., Isackson, P. J., Gall, C. M., and Jones, E. G., 1991a, Differential effects of monocular deprivation on glutamic acid decarboxylase and type II calcium-calmodulin-dependent protein kinase gene expression in the adult monkey visual cortex, J. Neurosci. 11: 31–47.

    PubMed  CAS  Google Scholar 

  • Benson, D. L., Isackson, P. J., Hendry, S. H. G., and Jones, E. G., 1991b, Differential gene expression for glutamic acid decarboxylase and type II calcium-calmodulin-dependent protein kinase in basal ganglia, thalamus and hypothalamus of the monkey, J. Neurosci. 11: 1540–1564.

    PubMed  CAS  Google Scholar 

  • Benson, D. L., Isackson, P. J., Gall, G. M., and Jones, E. G., 1992, Gontrasting patterns in the localization of glutamic acid decarboxylase and Ca2+/calmodulin protein kinase gene expression in the rat central nervous system, Neuroscience 46: 825–850.

    Article  PubMed  CAS  Google Scholar 

  • Blasdel, G. G., and Lund, J. S., 1983, Termination of afferent axons in macaque striate cortex, J. Neurosci. 3: 1389–1413.

    PubMed  CAS  Google Scholar 

  • Blasdel, G. G., Lund, J. S., and Fitzpatrick, D., 1985, Intrinsic connections of macaque striate cortex: Axonal projections of cells outside lamina 4G, J. Neurosci. 5: 3350–3369.

    PubMed  CAS  Google Scholar 

  • Blümke, I., Hof, P. R., Morrison, J. H., and Celio, M. R., 1990, Distribution of parvalbumin immunoreactivity in the visual cortex of Old World monkeys and humans, J. Comp. Neurol. 301: 417–432.

    Article  Google Scholar 

  • Blümke, I., Hof, P. R., Morrison, J. H., and Celio, M. R., 1991, Parvalbumin in the monkey striate cortex: A quantitative immunoelectron-microscopy study, Brain Res. 554: 237–243.

    Article  Google Scholar 

  • Bu, D. R., Erlander, M. G., Hitz, B. C., Tillakaratne, N.J. K., Kaufman, D. L., Wagner-McPherson, C. B., Evans, G. A., and Tobin, A. J., 1992, Two human glutamate decarboxylases, 65-kDa GAD and 67-kDa GAD, are each encoded by a single gene, Proc. Natl. Acad. Sci. USA 89: 2115–2119.

    Article  PubMed  CAS  Google Scholar 

  • Campbell, A. W., 1905, Histological Studies on the Localization of Cerebral Function, Cambridge University Press, London.

    Google Scholar 

  • Campbell, M. J., Lewis, D. A., Benoit, R., and Morrison, J. H., 1987, Regional heterogeneity in the distribution of somatostatin-28-and somatostatin-28 1–12 immunoreactive profiles in monkey neocortex, J. Neurosci. 7: 1133–1144.

    PubMed  CAS  Google Scholar 

  • Carder, R. K., Jones, E. G., and Hendry, S. H. C., 1991, Distribution of glutamate neurons and terminals in striate cortex of normal and monocularly deprived monkeys Soc. Neurosci. Abstr. 17: 115.

    Google Scholar 

  • Celio, M. R., 1986, Parvalbumin in most γ-aminobutyric acid-containing neurons of the rat cerebral cortex, Science 231: 995–997.

    Article  PubMed  CAS  Google Scholar 

  • Celio, M. R., Scharer, L., Morrison, J. H., Norman, A. W., and Bloom, F. E., 1986, Calbindin immunoreactivity alternates with cytochrome c-oxidase-rich zones in some layers of the primate visual cortex, Nature 323: 715–717.

    Article  PubMed  CAS  Google Scholar 

  • Clark, S. A., Allard, T, Jenkins, W. M., and Merzenich, M. M., 1988, Receptive fields in the bodysurface map in adult cortex defined by temporally correlated inputs, Nature 332: 444–445.

    Article  PubMed  CAS  Google Scholar 

  • Conti, F. A., Rustioni, A., Petrusz, P., and Towle, A. C., 1987, Glutamate-positive neurons in the somatic sensory cortex of rats and monkeys, J. Neurosci. 7: 1887–1901.

    PubMed  CAS  Google Scholar 

  • Conti, F., Fabri, M., and Manzoni, T., 1988, Immunocytochemical evidence for glutamatergic cortico-cortical connections in monkeys, Brain Res. 462: 148–153.

    Article  PubMed  CAS  Google Scholar 

  • Cowan, W. M., 1970, Anterograde and retrograde transneuronal degeneration in the central and peripheral nervous system, in: Contemporary Research Methods in Neuroanatomy (W. J. H. Nauta and S. O. E. Ebbesson, eds.), Springer, Berlin, pp. 217–249.

    Chapter  Google Scholar 

  • Damas-Mora, J., Skelton-Robinson, M., and Jenner, F. A., 1982, The Charles Bonnet syndrome in perspective, Psychol. Med. 12: 251–261.

    Article  PubMed  CAS  Google Scholar 

  • DeFelipe, J., and Farinas, I., 1993, The pyramidal neuron of the cerebral cortex. Morphological and chemical characteristics of the synaptic inputs, Prog. Neurobiol., in press.

    Google Scholar 

  • DeFelipe, J., and Jones, E. G., 1985, Vertical organization of γ-aminobutyric acid-accumulating intrinsic neuronal systems in monkey cerebral cortex, J. Neurosci. 5: 3246–3260.

    PubMed  CAS  Google Scholar 

  • DeFelipe, J., and Jones, E. G., 1988, Cajal on the Cerebral Cortex, Oxford University Press, London.

    Google Scholar 

  • DeFelipe, J., and Jones, E. G., 1991, Parvalbumin immunoreactivity reveals layer IV of the monkey cerebral cortex as a mosaic of microzones of thalamic afferent terminations, Brain Res. 562: 39–47.

    Article  PubMed  CAS  Google Scholar 

  • DeFelipe, J., and Jones, E. G., 1992, High resolution light and electron microscopic immunocytochemistry of co-localized GAB A and calbindin D-28k in somata and double bouquet cell axons of monkey somatosensory cortex, Eur. J. Neurosci. 4: 46–60.

    Article  PubMed  Google Scholar 

  • DeFelipe, J., Hendry, S. H. C., Jones, E. G., and Schmechel, D., 1985, Variability in the terminations of GABAergic chandelier cell axons on initial segments of pyramidal cell axons in the monkey sensory-motor cortex, J. Comp. Neurol. 231: 364–384.

    Article  PubMed  CAS  Google Scholar 

  • DeFelipe, J., Conley, M., and Jones, E. G., 1986a, Long-range focal collateralization of axons arising from cortico-cortical cells in monkey sensory-motor cortex, J. Neurosci. 6: 3749–3766.

    PubMed  CAS  Google Scholar 

  • DeFelipe, J., Hendry, S. H. C., and Jones, E. G., 1986b, A correlative electron microscopic study of basket cells and large GABAergic neurons in the monkey sensory-motor cortex, Neuroscience 7: 991–1009.

    Article  Google Scholar 

  • DeFelipe, J., Conti, F., Van Eyck, S. L., and Manzoni, T., 1988, Demonstration of glutamate-positive axon terminals forming asymmetric synapses in cat neocortex, Brain Res. 455: 162–165.

    Article  PubMed  CAS  Google Scholar 

  • DeFelipe, J., Hendry, S. H. C., and Jones, E. G., 1989a, Visualization of chandelier cell axons by parvalbumin immunoreactivity in monkey cerebral cortex, Proc. Natl. Acad. Sci. USA 86: 2093–2097.

    Article  PubMed  CAS  Google Scholar 

  • DeFelipe, J., Hendry, S. H. C., and Jones, E. G., 1989b, Synapses of double bouquet cells in monkey cerebral cortex visualized by calbindin immunoreactivity, Brain Res. 503: 49–54.

    Article  PubMed  CAS  Google Scholar 

  • DeFelipe, J., Hendry, S. H. C., Hashikawa, T, Molinari, M., and Jones, E. G., 1990, A microcolumnar structure of monkey cerebral cortex revealed by immunocytochemical studies of double bouquet cell axons, Neuroscience 37: 655–673.

    Article  PubMed  CAS  Google Scholar 

  • de Lima, A. D., and Morrison, J. H., 1989, Ultrastructural analysis of somatostatin-immunoreactive neurons and synapses in the temporal and occipital cortex of the macaque monkey, J. Camp. Neurol. 283: 212–227.

    Article  Google Scholar 

  • Demeulemeester, H., Archens, L., Vandesande, F., Orban, G. A., Heizmann, C. W., and Pochet, R., 1991, Calcium binding proteins and neuropeptides as molecular markers of GABAergic interneurons in the cat visual cortex, Exp. Brain Res. 84: 538–544.

    Article  PubMed  CAS  Google Scholar 

  • DeYoe, E. A., Hockfield, S., Garren, H., and Van Essen, D. C., 1990, Antibody labeling of functional subdivisions in visual cortex: Cat-301 immunoreactivity in striate and extrastriate cortex of the macaque monkey, Visual Neurosci. 5: 67–81.

    Article  CAS  Google Scholar 

  • Erondu, N. E., and Kennedy, M. B., 1985, Regional distribution of type II Ca2+/calmodulindependent protein kinase in rat brain, J. Neurosci. 5: 3270–3277.

    PubMed  CAS  Google Scholar 

  • Fairén, A., and Valverde, F., 1980, A specialized type of neuron in the visual cortex of the cat: A Golgi and electron microscope study of chandelier cells, J. Comp. Neurol. 194: 761–779.

    Article  PubMed  Google Scholar 

  • Fairén, A., DeFelipe, J., and Regidor, J., 1984, Nonpyramidal neurons. General account, in: Cerebral Cortex, Volume 1 (A. Peters and E. G. Jones, eds.), Plenum Press, New York, pp. 201–253.

    Google Scholar 

  • Fariñas, I., and DeFelipe, J., 1991, Patterns of synaptic input on cortico-cortical and cortico-thalamic cells in the cat visual cortex. II. The axon initial segment, J. Comp. Neurol. 304: 70–77.

    Article  PubMed  Google Scholar 

  • Felleman, D. J., and Van Essen, D. C., 1991, Distributed hierarchical processing in the primate cerebral cortex, Cereb. Cortex. 1: 1–47.

    Article  PubMed  CAS  Google Scholar 

  • Ferrer, I., Tuñon, T., Soriano, E., del Rio, A., Iraizoz, I., Fonseca, M., and Guionnet, N., 1992, Calbindin immunoreactivity in normal human temporal cortex, Brain Res. 572: 33–41.

    Article  PubMed  CAS  Google Scholar 

  • Ferster, D., 1986, Orientation selectivity of synaptic potentials in neurons of cat primary visual cortex, J. Neurosci. 6: 1284–1301.

    PubMed  CAS  Google Scholar 

  • Ferster, D., 1987, Origin of orientation-selective EPSPs in simple cells of cat visual cortex, J. Neurosci. 7: 1780–1791.

    PubMed  CAS  Google Scholar 

  • Ferster, D., 1988, Spatially opponent excitation and inhibition in simple cells of the cat visual cortex, J. Neurosci. 8: 1172–1180.

    PubMed  CAS  Google Scholar 

  • Fisken, R. A., Garey, L. J., and Powell, T. P. S., 1975, The intrinsic, association and commissural connections of area 17 of the visual cortex, Philos. Trans. R. Soc. London Ser. B 272: 487–536.

    Article  CAS  Google Scholar 

  • Fitzpatrick, D., and Diamond, I. T., 1980, Distribution of acetylcholinesterase in the geniculostriate system ofGalago senegalensis and Aotus tnvirgatus: Evidence for the origin of the reaction product in the lateral geniculate body, J. Comp. Neurol. 194: 703–720.

    Article  PubMed  CAS  Google Scholar 

  • Fitzpatrick, D., Itoh, K., and Diamond, I. T, 1983, The laminar organization of the lateral geniculate body and the striate cortex in the squirrel monkey (Samiri sciureus), J. Neurosci. 3: 673–702.

    PubMed  CAS  Google Scholar 

  • Fitzpatrick, D., Lund, J. S., and Blasdel, G. G., 1985, Intrinsic connections of macaque striate cortex: Afferent and efferent connections of lamina 4C, J. Neurosci. 5: 3329–3349.

    PubMed  CAS  Google Scholar 

  • Fitzpatrick, D., Lund, J. S., Schmechel, D. E., and Towles, A. C., 1987, Distribution of GABAergic neurons and axon terminals in the macaque striate cortex, J. Comp. Neurol. 264: 73–91.

    Article  PubMed  CAS  Google Scholar 

  • Foote, S. L., and Morrison, J. H., 1984, Postnatal development of laminar innervation patterns by monoaminergic fibers in monkey (Macaca fascicularis) primary visual cortex, J. Neurosci. 4: 2667–2680.

    PubMed  CAS  Google Scholar 

  • Freund, T. F., Martin, K. A. C., Smith, A. D., and Somogyi, P., 1983, Glutamate decarboxylaseimmunoreactive terminals of Golgi-impregnated axoaxonic cells and of presumed basket cells in synaptic contact with pyramidal neurons of cat’s visual cortex, J. Comp. Neurol. 221: 263–278.

    Article  PubMed  CAS  Google Scholar 

  • Freund, T. F., Martin, K. A. C., and Whitteridge, D., 1985, Innervation of cat visual areas 17 and 18 by physiologically identified X-and Y-type thalamic afferents. I. Arborization patterns and quantitative distribution of postsynaptic elements, J. Comp. Neurol. 242: 263–274.

    Article  PubMed  CAS  Google Scholar 

  • Freund, T. F., Martin, K. A. C., Soltesz, I., Somogyi, P., and Whitteridge, D. I., 1989, Arborization pattern and postsynaptic targets of physiologically identified thalamocortical afferents in striate cortex of the macaque monkey, J. Comp. Neurol. 289: 315–336.

    Article  PubMed  CAS  Google Scholar 

  • Gaspar, P., Berger, B., Febvret, A., Vigny, A., Krieger-Poulet, M., and Borri-Voltattorni, C., 1987, Tyrosine hydroxylase-immunoreactive neurons in the human cerebral cortex: A novel catecholaminergic group, Neurosci. Lett. 80: 257–262.

    Article  PubMed  CAS  Google Scholar 

  • Gilbert, C. D., and Wiesel, T. N., 1979, Morphology and intracortical projections of functionally characterized neurones in the cat visual cortex, Nature 280: 120–125.

    Article  PubMed  CAS  Google Scholar 

  • Gilbert, C. D., and Wiesel, T. N., 1983, Clustered intrinsic connections in cat visual cortex, J. Neurosci. 3: 1116–1133.

    PubMed  CAS  Google Scholar 

  • Gilbert, C. D., and Wiesel, T. N., 1989, Columnar specificity of intrinsic horizontal and corticocortical connections in cat visual cortex, J. Neurosci. 9: 2432–2442.

    PubMed  CAS  Google Scholar 

  • Gilbert, C. D., and Wiesel, T. N., 1992, Receptive field dynamics in adult primary visual cortex, Nature 356: 150–152.

    Article  PubMed  CAS  Google Scholar 

  • Graybiel, A. M., and Ragsdale, C. W., Jr., 1982, Pseudocholinesterase staining in the primary visual pathway of the macaque monkey, Nature 299: 439–442.

    Article  PubMed  CAS  Google Scholar 

  • Gregory, R. L., 1966, Eye and Brain: The Psychology of Seeing, Weidenfeld & Nicholson, London, pp. 188–219.

    Google Scholar 

  • Haseltine, E. C., DeBruyn, E. J., and Casagrande, V. A., 1979, Demonstration of ocular dominance columns in Nissl-stained sections of monkey visual cortex following enucleation, Brain Res. 176: 153–158.

    Article  PubMed  CAS  Google Scholar 

  • Haweth, R. S., Smith, E. L., III, Crawford, M. L. J., and Von Noorden, G. K., 1983, Effects of enucleation of the deprived eye on stimulus deprivation amblyopia in monkeys, Invest. Ophthalmol. Vis. Sci. 25: 10–17.

    Google Scholar 

  • Haweth, R. S., Smith, E. L., III, Duncan, G. C., Crawford, M. L. J., and Von Noorden, G. K., 1986, Effects of enucleation of the fixating eye on strabismic amblyopia in monkeys, Invest. Ophthalmol. Vis. Sci. 27: 246–254.

    Google Scholar 

  • Hayes, T. L., and Lewis, D. A., 1992, Nonphosphorylated neurofilament protein and calbindin immunoreactivity in layer III pyramidal neurons of human neocortex, Cereb. Cortex 2: 56–67.

    Article  PubMed  CAS  Google Scholar 

  • Heinen, S. J., and Skavenski, A. A., 1991, Recovery of responses in foveal V1 neurons following bilateral foveal lesions in adult monkey, Exp. Brain Res. 83: 670–674.

    Article  PubMed  CAS  Google Scholar 

  • Hendrickson, A. E., 1982, The orthograde axoplasmic transport autoradiographic technique and its implications for additional neuroanatomical analysis of the striate cortex, in: Cytochemical Methods in Neuroanatomy (V. Chan-Palay and S. L. Palay, eds.), Liss, New York, 1–16.

    Google Scholar 

  • Hendrickson, A. E., Wilson, J. R., and Ogren, M. P., 1978, The neuroanatomical organization of pathways between dorsal lateral geniculate nucleus and visual cortex in old and new world primates, J. Comp. Neurol. 182: 123–136.

    Article  PubMed  CAS  Google Scholar 

  • Hendrickson, A. E., Hunt, S. P., and Wu, J. L., 1981, Immunocytochemical localization of glutamic acid decarboxylase in monkey striate cortex, Nature 292: 605–607.

    Article  PubMed  CAS  Google Scholar 

  • Hendrickson, A. E., Ogren, M., Vaughn, J. E., Barber, R. P., and Wu, J., 1983, Light and electron microscopic immunocytochemical localization of glutamic acid decarboxylase in monkey geniculate complex: Evidence for GABAergic neurons and synapses, J. Neurosci. 3: 1245–1262.

    PubMed  CAS  Google Scholar 

  • Hendrickson, A. E., Mehra, R., and Tobin, A., 1988, In situ hybridization and immunocytochemical labeling GABA neurons during development of monkey visual cortex Soc. Neurosci. Abstr. 14: 188.

    Google Scholar 

  • Hendrickson, A. E., Van Brederode, J. F. M., Mulligan, K. A., and Celio, M. R., 1991, Development of the calcium-binding proteins parvalbumin and calbindin in monkey striate cortex, J. Comp. Neurol. 307: 626–646.

    Article  PubMed  CAS  Google Scholar 

  • Hendry, S. H. C., 1991, Delayed reduction in GABA and GAD immunoreactivity of neurons in the adult monkey dorsal lateral geniculate nucleus following monocular deprivation or enucleation, Exp. Brain Res. 86: 47–59.

    Article  PubMed  CAS  Google Scholar 

  • Hendry, S. H. C., and Carder, R. K., 1993, Laminar specific compartmentation of calbindin immunoreactivity in monkey and human visual cortex, Vis. neurosci., in press.

    Google Scholar 

  • Hendry, S. M. C., and Jones, E. G., 1981, Sizes and distribution of intrinsic neurons incorporating tritiated GABA in monkey sensory-motor cortex, J. Neurosci. 1: 390–405.

    PubMed  CAS  Google Scholar 

  • Hendry, S. H. C., and Jones, E. G., 1986, Reduction in number of GABA immunostained neurons in deprived-eye dominance columns of monkey area 17, Nature 320: 750–753.

    Article  PubMed  CAS  Google Scholar 

  • Hendry, S. H. C., and Jones, E. G., 1988, Activity-dependent regulation of GABA expression in the visual cortex of adult monkeys, Neuron 1: 701–712.

    Article  PubMed  CAS  Google Scholar 

  • Hendry, S. H. C., and Jones, E. G., 1989, Synaptic organization of GABA and GABA/tachykinin immunoreactive neurons in layer IVCß of monkey area 17, Soc. Neurosci. Abstr. 14: 1123.

    Google Scholar 

  • Hendry, S. H. C., and Kennedy, M. B., 1986, Immunoreactivity for a calmodulin-dependent protein kinase in selectively increased in macaque striate cortex after monocular deprivation, Proc. Natl. Acad. Sci. USA 83: 1536–1540.

    Article  PubMed  CAS  Google Scholar 

  • Hendry, S. H. C., Houser, C. R., Jones, E. G., and Vaughn, J. E., 1983a, Synaptic organization of immunocytochemically identified GABA neurons in the monkey sensory-motor cortex, J. Neurocytol. 12: 639–660.

    Article  PubMed  CAS  Google Scholar 

  • Hendry, S. H. C., Jones, E. G., and Beinfeld, M. C., 1983b, Cholecystokinin-immunoreactive neurons in rat and monkey cerebral cortex make symmetric synapses and have intimate associations with blood vessels, Proc. Natl. Acad. Sa. USA 80: 2400–2404.

    Article  CAS  Google Scholar 

  • Hendry, S. H. C., Jones, E. G., DeFelipe, J., Schmechel, D., Brandon, C., and Emson, P. C., 1984a, Neuropeptide-containing neurons of the cerebral cortex are also GABAergic, Proc. Natl. Acad. Sci. USA 81: 6526–6530.

    Article  PubMed  CAS  Google Scholar 

  • Hendry, S. H. C., Hockfield, S., Jones, E. G., and McKay, R., 1984b, Monoclonal antibody that identifies subsets of neurons in the central visual system of monkey and cat, Nature 307: 267–269.

    Article  PubMed  CAS  Google Scholar 

  • Hendry, S. H. C., Jones, E. G., and Emson, P. C., 1984c, Morphology, distribution and synaptic relations of somatostatin-and neuropeptide Y-immunoreactive neurons in rat and monkey neocortex, J. Neurosci. 4: 2497–2517.

    PubMed  CAS  Google Scholar 

  • Hendry, S. H. C., Jones, E. G., Schwark, H. D., and Yan, J., 1987, Numbers and proportions of GABA-immunoreactive neurons in different areas of monkey cerebral cortex, J. Neurosci. 7: 1503–1519.

    PubMed  CAS  Google Scholar 

  • Hendry, S. H. C., Jones, E. G., and Burstein, N., 1988a, Activity-dependent regulation of tachykininlike immunoreactivity in neurons of the monkey primary visual cortex, J. Neurosci. 8: 1225–1238.

    PubMed  CAS  Google Scholar 

  • Hendry, S. H. C., Jones, E. G., Hockfield, S., and McKay, D. G., 1988b, Neuronal populations stained with the monoclonal antibody Cat-301 in the mammalian cerebral cortex and thalamus, J. Neurosci. 8: 518–542.

    PubMed  CAS  Google Scholar 

  • Hendry, S. H. C., Jones, E. G., Emson, P. C., Lawson, D. E. M., Heizmann, C. W., and Streit, P., 1989, Two classes of cortical GABA neurons defined by differential calcium binding protein immunoreactivities, Exp. Brain Res. 76: 467–472.

    Article  PubMed  CAS  Google Scholar 

  • Hendry, S. H. C, Fuchs, J., de Blas, A. L., and Jones, E. G., 1990, Distribution and plasticity of immunocytochemically localized GABA receptors in adult monkey visual cortex, J. Neurosci. 10: 2438–2450.

    PubMed  CAS  Google Scholar 

  • Hevner, R. F., and Wong-Riley, M. T. T., 1990, Regulation of cytochrome oxidase protein levels by functional activity in the macaque monkey visual system, J. Neurosci. 10: 1331–1340.

    PubMed  CAS  Google Scholar 

  • Hockfield, S., and Sur, M., 1990, Monoclonal antibody Gat-301 identifies Y-cells in the dorsal lateral geniculate nucleus of the cat, J. Comp. Neurol. 300: 320–331.

    Article  PubMed  CAS  Google Scholar 

  • Hockfield, S., McKay, R. D., Hendry, S. H. C., and Jones, E. G., 1984, A surface antigen that identifies ocular dominance columns in the visual cortex and laminar features of the lateral geniculate nucleus, Cold Spring Harbor Symp. Quant. Biol. 35: 877–889.

    Google Scholar 

  • Hof, P. R., Cox, K., Young, W. G., Celio, M. R., Rogers, J., and Morrison, J. H., 1991, Parvalbuminimmunoreactive neurons in the neocortex are resistant to degeneration in Alzheimer’s disease, J. Neuropathol. Exp. Neurol. 50: 451–462.

    Article  PubMed  CAS  Google Scholar 

  • Hornung, J. P., Törk, I., and De Tribolet, N., 1989, Morphology of tyrosine hydroxylase-immunoreactive neurons in the human cerebral cortex, Exp. Brain Res. 76: 12–20.

    Article  PubMed  CAS  Google Scholar 

  • Horton, J. C., 1984, Cytochrome oxidase patches: A new cytoarchitectonic feature of monkey visual cortex, Philos. Trans. R. Soc. London Ser. B 304: 199–253.

    Article  CAS  Google Scholar 

  • Horton, J. C., and Hedley-White, E. T., 1984, Mapping of cytochrome oxidase patches and ocular dominance columns in human visual cortex, Philos. Trans. R. Soc. London Ser. B 304: 255–272.

    Article  CAS  Google Scholar 

  • Horton, J. C., and Hubel, D. H., 1981, Regular patchy distribution of cytochrome oxidase staining in primary visual cortex of macaque monkey, Nature 292: 762–764.

    Article  PubMed  CAS  Google Scholar 

  • Horton, J. C., Dagi, L. R., McCrane, E. P., and de Monasterio, F. M., 1990, Arrangement of ocular dominance columns in human visual cortex, Arch. Ophthalmol. 180: 1025–1031.

    Article  Google Scholar 

  • Houser, C. R., Hendry, S. H. C., Jones, E. G., and Vaughn, J. E., 1983, Morphological diversity of GABA neurons demonstrated immunocytochemically in monkey sensory-motor cortex, J. Neurocytol. 12: 617–638.

    Article  PubMed  CAS  Google Scholar 

  • Houser, C. R., Vaughn, J. E., Hendry, S. H. C., Jones, E. G., and Peters, A., 1984, GABA neurons in the cerebral cortex, in: Cerebral Cortex, Volume 2 (E. G. Jones and A. Peters, eds.), Plenum Press, New York, pp. 63–90.

    Chapter  Google Scholar 

  • Hubel, D. H., and Wiesel, T. N., 1968, Receptive fields and functional architecture of monkey striate cortex, J. Physiol. (London) 195: 215–243.

    CAS  Google Scholar 

  • Hubel, D. H., and Wiesel, T. N., 1972, Laminar and columnar distribution of geniculo-cortical fibers in the macaque monkey, J. Comp. Neurol. 146: 421–450.

    Article  PubMed  CAS  Google Scholar 

  • Hubel, D. H., and Wiesel, T. N., 1977, Functional architecture of macaque monkey visual cortex, Proc. R. Soc. London Ser. B 198: 1–59.

    Article  CAS  Google Scholar 

  • Hubel, D. H., Wiesel, T. N., and LeVay, S., 1977, Plasticity of ocular dominance columns in monkey striate cortex, Philos. Trans. R. Soc. London Ser. B 278: 377–409.

    Article  CAS  Google Scholar 

  • Humphrey, A. L., and Hendrickson, A. E., 1983, Background and stimulus-induced patterns of high metabolic activity in the visual cortex (area 17) of the squirrel and macaque monkey, J. Neurosci. 3: 345–358.

    PubMed  CAS  Google Scholar 

  • Huntley, G. W., and Jones, E. G., 1990, Cajal—Retzius neurons in developing monkey neocortex show immunoreactivity for calcium binding proteins, J. Neurocytol. 19: 200–212.

    Article  PubMed  CAS  Google Scholar 

  • Huntley, G. W., and Jones, E. G., 1991, Relationship of intrinsic connections to forelimb movement representations in monkey motor cortex: A correlative anatomic and physiological study, J. Neurophysiol. 66: 390–413.

    PubMed  CAS  Google Scholar 

  • Huntley, G. W., Hendry, S. H. G., Killackey, H. P., Chalupa, L. M., and Jones, E. G., 1988, Temporal sequence of neurotransmitter expression by developing neurons of fetal monkey visual cortex, Dev. Brain Res. 43: 69–96.

    Article  CAS  Google Scholar 

  • Huntsman, M. M., Jones, E. G., Möhler, H., and Hendry, S. H. C., 1991, Distribution of immunocytochemically localized GABA receptor subunits in monkey and human visual cortex, Soc. Neurosci. Abstr. 17: 115.

    Google Scholar 

  • Itaya, S. K., Itaya, P. W., and Van Hoesen, G. W., 1984, Intracortical termination of the retinogeniculo-striate pathway studies with transsynaptic tracer (wheat germ agglutinin—horseradish peroxidase) and cytochrome oxidase staining in the macaque monkey, Brain Res. 304: 303–310.

    Article  PubMed  CAS  Google Scholar 

  • Jenkins, W. M., Merzenich, M. M., Ochs, M. T., Allard, T., and Guic-Robles, E., 1990, Functional reorganization of primary somatosensory cortex in adult owl monkeys after behaviorally controlled tactile stimulation, J. Neurophysiol. 63: 82–104.

    PubMed  CAS  Google Scholar 

  • Jones, E. G., 1975, Varieties and distribution of non-pyramidal cells in the somatic sensory cortex of the squirrel monkey, J. Comp. Neurol. 160: 205–268.

    Article  PubMed  CAS  Google Scholar 

  • Jones, E. G., 1984, Neurogliaform or spiderweb cells, in: Cerebral Cortex, Volume 1 (A. Peters and E. G. Jones, eds.), Plenum Press, New York, pp. 409–418.

    Chapter  Google Scholar 

  • Jones, E. G., 1990, The role of afferent activity in the maintenance of primate neocortical function, J. Exp. Biol. 153: 155–176.

    PubMed  CAS  Google Scholar 

  • Jones, E. G., and Hendry, S. H. C., 1984, Basket cells, in: Cerebral Cortex, Volume 1 (A. Peters, and E. G. Jones, eds.), Plenum Press, New York: pp. 309–336.

    Chapter  Google Scholar 

  • Jones, E. G., and Hendry, S. H. C, 1986, Co-localization of GABA and neuropeptides in neocortical neurons, Trends Neurosci. 10: 71–76.

    Article  Google Scholar 

  • Jones, E. G., DeFelipe, J., Hendry, S. H. C., and Maggio, J. E., 1988, A study of tachykininimmunoreactive neurons in monkey cerebral cortex, J. Neurosci. 8: 1206–1224.

    PubMed  CAS  Google Scholar 

  • Kaas, J. H., Krubitzer, L. A., Chino, Y. M., Langston, A. L., Polley, E. H., and Blair, N., 1990, Reorganization of retinotopic cortical maps in adult mammals after lesions of the retina, Science 248: 229–231.

    Article  PubMed  CAS  Google Scholar 

  • Katz, L. C., Gilbert, C. D., and Wiesel, T. N., 1989, Local circuits and ocular dominance in monkey striate cortex, J. Neurosci. 9: 1389–1399.

    PubMed  CAS  Google Scholar 

  • Kaufman, D. L., Houser, C. R., and Tobin, A. J., 1989, Two forms of glutamate decarboxylase (GAD), with different N-terminal sequences, have distinct intraneuronal distributions, Soc. Neurosci. Abstr. 15: 487.

    Google Scholar 

  • Kelly, P. T, and Montgomery, P. R., 1982, Subcellular localization of the 52,000 molecular weight major postsynaptic density protein, Brain Res. 223: 265–286.

    Article  Google Scholar 

  • Kelly, P. T, and Vernon, P., 1985, Changes in the subcellular distribution of calmodulin kinase II during brain development, Dev. Brain Res. 18: 221–224.

    Article  Google Scholar 

  • Kelly, P. T., McGuinness, T. L., and Greengard, P., 1984, Evidence that the major postsynaptic density protein is a component of a Ca+ +/calmodulin dependent protein kinase, Proc. Natl. Acad. Sci. USA 81: 945–949.

    Article  PubMed  CAS  Google Scholar 

  • Kennedy, M. B., Bennett, M. K., and Erondu, N. E., 1983, Biochemical and immunochemical evidence that the “major postsynaptic density protein” is a subunit of a calmodulin-dependent protein kinase, Proc. Natl. Acad. Sci. USA 80: 7357–7361.

    Article  PubMed  CAS  Google Scholar 

  • Kisvárday, Z. F., Cowey, A., and Somogyi, P., 1986, Synaptic relationships of a type of GABA-immunoreactive neuron (clutch cell), spiny stellate cells and lateral geniculate nucleus afferents in layer IVC of the monkey striate cortex, Neuroscience 19: 741–761.

    Article  PubMed  Google Scholar 

  • Kisvárday, Z. F., Martin, K. A. C., Friedlander, M. J., and Somogyi, P., 1987, Evidence for interlaminar inhibitory circuits in the striate cortex of the cat, J. Comp. Neurol. 260: 1–19.

    Article  PubMed  Google Scholar 

  • Kisvárday, Z. F., Gulyas, A., Beroukas, D., North, J. B., Chubb, I. W., and Somogyi, P., 1990, Synapses, axonal and dendritic patterns of GABA-immunoreactive neurons in human cerebral cortex, Brain 113: 793–812.

    Article  PubMed  Google Scholar 

  • Kobayashi, K., Emson, P. C., and Mountjoy, C. Q., 1989, Vicia villosa lectin-positive neurones in human cerebral cortex. Loss in Alzheimer-type dementia, Brain Res. 498: 170–174.

    Article  PubMed  CAS  Google Scholar 

  • Kosofsky, B. E., Molliver, M. E., Morrison, J. H., and Foote, S. L., 1984, The serotonin and norepinephrine innervation of primary visual cortex in the cynomolgus monkey (Macaca fascicularis), J. Comp. Neurol. 230: 168–178.

    Article  PubMed  CAS  Google Scholar 

  • Kuljis, R. O., and Rakic, P., 1989a, Distribution of neuropeptide Y-containing perikarya and axons in various neocortical areas in the macaque monkey, J. Comp. Neurol. 280: 383–392.

    Article  PubMed  CAS  Google Scholar 

  • Kuljis, R. O., and Rakic, P., 1989b, Neuropeptide Y-containing neurons are situated outside cytochrome oxidase puffs in macaque visual cortex, Visual Neurosci. 2: 57–62.

    Article  CAS  Google Scholar 

  • LeVay, S., Wiesel, T. N., and Hubel, D. H., 1980, The development of ocular dominance columns in normal and visually deprived monkeys, J. Comp. Neurol. 191: 1–51.

    Article  PubMed  CAS  Google Scholar 

  • Lewis, D. A., and Lund, J. S., 1990, Heterogeneity of chandelier neurons in monkey neocortex: Corticotropin-releasing factor-and parvalbumin-immunoreactive populations, J. Comp. Neurol. 293: 599–615.

    Article  PubMed  CAS  Google Scholar 

  • Lewis, D. A., Foote, S. L., and Cha, C. I., 1989, Corticotropin-releasing factor immunoreactivity in monkey neocortex: An immunohistochemical analysis, J. Comp. Neurol. 290: 599–613.

    Article  PubMed  CAS  Google Scholar 

  • Lin, J. W., Sugimore, M., Llinás, R. R., McGuinness, T. L., and Greengard, P., 1990, Effects of synapsin I and calcium/calmodulin-dependent protein kinase II on spontaneous neurotransmitter release in the squid giant synapse, Proc. Natl. Acad. Sci. USA 87: 8257–8261.

    Article  PubMed  CAS  Google Scholar 

  • Livingstone, M. S., and Hubel, D. H., 1982, Thalamic inputs to cytochrome oxidase-rich regions in monkey visual cortex, Proc. Natl. Acad. Sci. USA 79: 6098–6101.

    Article  PubMed  CAS  Google Scholar 

  • Livingstone, M. S., and Hubel, D. H., 1984, Anatomy and physiology of a color system in the primate visual cortex, J. Neurosci. 4: 309–356.

    PubMed  CAS  Google Scholar 

  • Llinás, R., McGuinness, T. L., Leonard, C. S., Sugimori, M., and Greengard, P., 1985, Intraterminal injection of synapsin I or calcium/calmodulin dependent protein kinase II alters neurotransmitter release at the squid giant synapse, Proc. Natl. Acad. Sä. USA 82: 3035–3039.

    Article  Google Scholar 

  • Lund, J. S., 1973, Organization of neurons in the visual cortex, area 17, of the monkey (Macaca mulatto), J. Comp. Neurol. 147: 455–496.

    Article  PubMed  CAS  Google Scholar 

  • Lund, J. S., 1987, Local circuit neurons of macaque striate cortex: I. Neurons of laminae 4C and 5A, J. Comp. Neurol. 257: 60–92.

    Article  PubMed  CAS  Google Scholar 

  • Lund, J. S., 1990, Excitatory and inhibitory circuiting and laminar mapping strategies in the primary visual cortex of the monkey, in: Signal and Sense: Local and Clobal Order in Perceptual Maps (G. M. Edelman, W. E. Gall, and W. M. Cowan, eds.), Wiley-Liss, New York, pp. 51–82.

    Google Scholar 

  • Lund, J. S., and Yoshioka, T, 1991, Local circuit neurons of macaque monkey striate cortex: III. Neurons of laminae 4B, 4A, and 3B, J. Comp. Neurol. 311: 234–258.

    Article  PubMed  CAS  Google Scholar 

  • Lund, J. S., Henry, G. H., McQueen, C. L., and Harvey, A. R., 1979, Anatomical organization of the visual cortex of the cat: A comparison with area 17 of the macaque monkey, J. Comp. Neurol. 184: 559–618.

    Article  Google Scholar 

  • Lund, J. S., Hawken, M. J., and Parker, A. J., 1988, Local circuit neurons of macaque monkey striate cortex: II. Neurons of laminae 5B and 6, J. Comp. Neurol. 276: 1–29.

    Article  PubMed  CAS  Google Scholar 

  • McGuinness, T. L., Lai, Y., and Greengard, P., 1985, Ca2+/calmodulin-dependent protein kinase II. Isozymic forms from rat forebrain and cerebellum, J. Biol. Chem. 260: 1696–1704.

    PubMed  CAS  Google Scholar 

  • McGuinness, T. L., Brady, S. T., Gruner, J. A., Sugimori, M., Llinás, R., and Greengard, P., 1989, Phosphorylation-dependent inhibition by synapsin I of organelle movement in squid axoplasm, J. Neurosci. 9: 4138–4149.

    PubMed  CAS  Google Scholar 

  • McGuire, B. A., Gilbert, C. D., Rivlin, P. K., and Wiesel, T. N., 1991, Targets of horizontal connections in macaque primary visual cortex, J. Comp. Neurol. 305: 370–392.

    Article  PubMed  CAS  Google Scholar 

  • McGuire, P. K., Hockfield, S., and Goldman-Rakic, P. S., 1989, Distribution of Cat-301 immunoreactivity in the frontal and parietal lobes of the macaque monkey, J. Comp. Neurol. 288: 280–296.

    Article  PubMed  CAS  Google Scholar 

  • McNamara, M. E., Heros, R. C., and Boiler, F., 1982, Visual hallucinations in blindness: The Charles Bonnet syndrome, Int. J. Neurosci. 17: 13–15.

    Article  PubMed  CAS  Google Scholar 

  • Malenka, R. C., Kauer, J. A., Perkel, D. J., Mauk, M. D., Kelly, P. T, Nicoll, R. A., and Waxham, M. N., 1989, An essential role for postsynaptic calmodulin and protein kinase activity in long-term potentiation, Nature 340: 554–557.

    Article  PubMed  CAS  Google Scholar 

  • Malinow, R., Schulman, H., and Tsien, R. W., 1989, Inhibition of postsynaptic PKC or CaMKII blocks induction but not expression of LTP, Science 245: 862–866.

    Article  PubMed  CAS  Google Scholar 

  • Marin-Padilla, M., 1969, Origin of the pericellular baskets of the pyramidal cells of the human motor cortex: A Golgi study, Brain Res. 14: 633–646.

    Article  PubMed  CAS  Google Scholar 

  • Marin-Padilla, M., 1987, The chandelier cell of the human visual cortex: A Golgi study, J. Comp. Neurol. 256: 61–70.

    Article  PubMed  CAS  Google Scholar 

  • Martin, K. A. C., 1984, Neuronal circuits in cat striate cortex, in: Cerebral Cortex, Volume 2 (E. G. Jones and A. Peters, eds.), Plenum Press, New York, pp. 241–283.

    Chapter  Google Scholar 

  • Mates, S. L., and Lund, J. S., 1983, Neuronal composition and development in lamina 4C of monkey striate cortex, J. Comp. Neurol. 221: 60–90.

    Article  PubMed  CAS  Google Scholar 

  • Meinicke, D. L., and Rakic, P., 1989, The temporal relationship of GABA and GABA-A/benzodiazepine receptor expression in neurons of the visual cortex of developing monkeys, Soc. Neurosci. Abstr. 15: 1335.

    Google Scholar 

  • Merzenich, M. M., Kaas, J. H., Wall, J., Nelson, R. J., Sur, M., and Felleman, D., 1983a, Topographic reorganization of somatosensory cortical areas 3B and 1 in adult monkeys following restricted deafferentation, Neuroscience 8: 33–56.

    Article  PubMed  CAS  Google Scholar 

  • Merzenich, M. M., Kaas, J. H., Wall, J. T., Sur, M., Nelson, R. J., and Felleman, D. J., 1983b, Progression of change following median nerve section in the cortical representation of the hand in areas 3b and 1 in adult owl and squirrel monkeys, Neuroscience 10: 639–666.

    Article  PubMed  CAS  Google Scholar 

  • Merzenich, M. M., Nelson, R. J., Kaas, J. H., Stryker, M. P., Jenkins, W. M., Zook, J. M., Cynader, M. S., and Schoppmann, A., 1987, Variability in hand surface representations in areas 3b and 1 in adult owl and squirrel monkeys, J. Comp. Neurol. 258: 281–296.

    Article  PubMed  CAS  Google Scholar 

  • Miller, S. G., and Kennedy, M. B., 1985, Distinct forebrain and cerebellar isozymes of type II Ca2+/calmodulin-dependent protein kinase associate differently with the post-synaptic density fraction, J. Biol. Chem. 260: 9039–9046.

    PubMed  CAS  Google Scholar 

  • Montero, V. M., and Zempel, J., 1986, The proportion and size of GABA-immunoreactive neurons in the magnocellular and parvicellular layers of the lateral geniculate nucleus of the rhesus monkey, Exp. Brain Res. 62: 215–223.

    Article  PubMed  CAS  Google Scholar 

  • Morrison, J. H., and Foote, S. L., 1986, Noradrenergic and serotoninergic innervation of cortical, thalamic and tectal visual structures in Old and New World monkeys, J. Comp. Neurol. 243: 117–138.

    Article  PubMed  CAS  Google Scholar 

  • Morrison, J. H., Foote, S. L., Molliver, M. E., Bloom, F. E., and Lidov, H. G. W., 1982, Noradrenergic and serotonergic fibers innervate complementary layers in monkey primary visual cortex: An immunohistochemical study, Proc. Natl. Acad. Sci. USA 79: 2401–2405.

    Article  PubMed  CAS  Google Scholar 

  • Mulligan, K. A., van Brederode, J. F. M., and Hendrickson, A. E., 1989, The lectin Vicia villosa labels a distinct subset of GABAergic cells in macaque visual cortex, Visual Neurosci. 2: 63–72.

    Article  CAS  Google Scholar 

  • Myers, R. E., 1962, Commissural connections between occipital lobes of the monkey, J. Comp. Neurol. 118: 1–16.

    Article  PubMed  CAS  Google Scholar 

  • Naegle, J. R., and Barnstable, C. J., 1989, Molecular determinants of GABAergic local-circuit neurons in the visual cortex, Trends Neurosci. 12: 28–34.

    Article  Google Scholar 

  • Nakagawa, F., Schulte, B. A., and Spicer, S. S., 1986, Selective cytochemical demonstration of glycoconjugate-containing terminal N-acetylgalactosamine on some brain neurons, J. Comp. Neurol. 243: 280–290.

    Article  PubMed  CAS  Google Scholar 

  • Newsome, W. T., and Allman, J. M., 1980, Interhemispheric connections of visual cortex in the owl monkey, Aotus trivirgatus, and the bushbaby, Galago senegalensis, J. Comp. Neurol. 194: 209–233.

    Article  PubMed  CAS  Google Scholar 

  • Ogren, M. P., and Hendrickson, A. E., 1977, The distribution of pulvinar terminals in visual areas 17 and 18 of the monkey, Brain Res. 137: 343–350.

    Article  PubMed  CAS  Google Scholar 

  • O’Kusky, J., and Colonnier, M., 1982, A laminar analysis of the number of neurons, glia and synapses in the visual cortex (area 17) of adult macaque monkeys, J. Comp. Neurol. 210: 278–290.

    Article  PubMed  Google Scholar 

  • Ouimet, C. C., McGuinness, T. L., and Greengard, P., 1984, Immunocytochemical localization of calcium/calmodulin-dependent protein kinase II in rat brain, Proc. Natl. Acad. Sci. USA 81: 5604–5608.

    Article  PubMed  CAS  Google Scholar 

  • Peters, A., and Saint-Marie, R. L., 1984, Smooth and sparsely spinous cells forming local axonal plexuses, in: Cerebral Cortex, Volume 1 (A. Peters and E.G. Jones, eds.), Plenum Press, New York, pp. 419–446.

    Google Scholar 

  • Peters, A., Proskauer, C. C., and Ribak, C. E., 1982, Chandelier cells in rat visual cortex, J. Comp. Neurol. 206: 397–416.

    Article  PubMed  CAS  Google Scholar 

  • Rakic, P., Bourgeois, J., Eckenhoff, M. F., Zecevic, N., and Goldman-Rakic, P., 1986, Concurrent overproduction of synapses in diverse regions of the primate cerebral cortex, Science 232: 232–235.

    Article  PubMed  CAS  Google Scholar 

  • Rakic, P., Goldman-Rakic, P. S., and Gallagher, D., 1988, Quantitative autoradiography of major neurotransmitter receptors in the monkey striate and extrastriate cortex, J. Neurosci. 8: 3670–3690.

    PubMed  CAS  Google Scholar 

  • Ramachandran, V. S., and Gregory, R. L., 1991, Perceptual filling in of artificially induced scotomas in human vision, Nature 350: 699–702.

    Article  PubMed  CAS  Google Scholar 

  • Ramoa, A. S., Paradiso, M. A., and Freeman, R. D., 1988, Blockade of intracortical inhibition in kitten striate cortex: Effects on receptive field properties and associated loss of ocular dominance plasticity, Exp. Brain Res. 73: 285–298.

    Article  PubMed  CAS  Google Scholar 

  • Ramon y Cajal, S., 1899a, Estudios sobre la corteza cerebral humana I: Corteza visual, Rev. Trim. Micrograf. Madrid. 4:1–63. Translated in: DeFelipe, J., and Jones, E. G., 1988, Cajal on the Cerebral Cortex, Oxford University Press, London, pp. 147-187.

    Google Scholar 

  • Ramon y Cajal, S., 1899b, Estudios sobre la corteza cerebral humana II: Estructura de la corteza motriz del hombre y mamíferos superiores, Rev. Trim. Micrograf. Madrid 4: 117–200. Translated in: DeFelipe, J., and Jones, E. G., 1988, Cajal on the Cerebral Cortex, Oxford University Press, London, pp. 188-250.

    Google Scholar 

  • Reiter, H. O., and Stryker, M. P., 1988, Neural plasticity without postsynaptic action potentials: Less-active inputs become dominant when kitten visual cortical cells are pharmacologically inhibited, Proc. Natl. Acad. Sci. USA 85: 3623–3627.

    Article  PubMed  CAS  Google Scholar 

  • Rezak, M., and Benevento, L. A., 1979, A comparison of the organization of the projections of the dorsal lateral geniculate nucleus, the inferior pulvinar and adjacent lateral pulvinar to primary visual cortex (area 17) in the macaque monkey, Brain Res. 167: 19–40.

    Article  PubMed  CAS  Google Scholar 

  • Ribak, C. E., 1978, Aspinous and sparsely-spinous stellate neurons in the visual cortex of rats contain glutamic acid decarboxylase, J. Neurocytol. 7: 461–478.

    Article  PubMed  CAS  Google Scholar 

  • Roberts, E., 1975, GABA in nervous system function—An overview, in: The Nervous System, Volume 1 (D. B. Tower, ed.), New York, Raven, pp. 541–552.

    Google Scholar 

  • Rockel, A. J., Hiorns, R. W., and Powell, T. P. S., 1980, The basic uniformity in structure of the neocortex, Brain 103: 221–244.

    Article  PubMed  CAS  Google Scholar 

  • Sanes, J. N., Suner, S., Lando, J. F., and Donoghue, J. P., 1988, Rapid reorganization of adult rat motor cortex somatic representation patterns after motor nerve injury, Proc. Natl. Acad. Sci. USA 85: 2003–2007.

    Article  PubMed  CAS  Google Scholar 

  • Schiffmann, S., Campistrom, G., Tugendhaft, P., Brotchi, J., Flament-Durand, J., Geffard, M., and Vanderhaeghen, J. J., 1988, Immunocytochemical detection of GABAergic nerve cells in the human temporal cortex using a direct 7-aminobutyric acid antiserum, Brain Res. 442: 270–278.

    Article  PubMed  CAS  Google Scholar 

  • Schmechel, D. E., Vickrey, B. G., Fitzpatrick, D., and Elde, R. P., 1984, GABAergic neurons of mammalian cerebral cortex: Widespread subclass defined by somatostatin content, Neurosci. Lett. 47: 227–232.

    Article  PubMed  CAS  Google Scholar 

  • Schulman, H., 1984, Phosphorylation of microtubule-associated proteins by a Ca2+/calmodulindependent protein kinase, J. Cell Biol. 99: 11–19.

    Article  PubMed  CAS  Google Scholar 

  • Shatz, C. J., 1990, Impulse activity and the patterning of connections during CNS development, Neuron 5: 745–756.

    Article  PubMed  CAS  Google Scholar 

  • Shaw, C., and Cynader, M. C., 1986, Laminar distribution of receptors in monkey (Macaca fascicularis) geniculostriate system, J. Comp. Neurol. 248: 301–312.

    Article  PubMed  CAS  Google Scholar 

  • Shaw, C., Cameron, L., March, D., Cynader, M. C., and Hendrickson, A., 1991, Pre-and postnatal development of GABA receptors in Macaca monkey visual cortex, J. Neurosci. 11: 3943–3959.

    PubMed  CAS  Google Scholar 

  • Shields, S. M., Ingebritsen, T. S., and Kelly, P. T., 1985, Identification of protein phosphate I in synaptic junctions: Dephosphorylation of endogenous calmodulin-dependent kinase II and synaptic-enriched phosphoproteins, J. Neurosci. 5: 3414–3422.

    PubMed  CAS  Google Scholar 

  • Sillito, A. M., 1974, Modification of the receptive field properties of neurons in the visual cortex by bicuculline, a GABA antagonist, J. Physiol. (London) 239: 36–37P.

    Google Scholar 

  • Sillito, A. M., 1975a, The contribution of inhibitory mechanisms to the receptive field properties of neurones in the striate cortex of the cat, J. Physiol. (London) 250: 305–329.

    CAS  Google Scholar 

  • Sillito, A. M., 1975b, The effectiveness of bicuculline as an antagonist of GABA and visually evoked inhibition in the cat’s striate cortex, J. Physiol. (London) 250: 287–304.

    CAS  Google Scholar 

  • Sillito, A. M., 1984, Functional considerations of the operation of GABAergic inhibitory processes in the visual cortex, in: Cerebral Cortex, Volume 2 (E. G. Jones, and A. Peters, eds.), Plenum Press, New York, pp. 91–117.

    Chapter  Google Scholar 

  • Sillito, A. M., Kemp, J. A., and Blakemore, C., 1981, The role of GABAergic inhibition in the cortical effects of monocular deprivation, Nature 291: 318–320.

    Article  PubMed  CAS  Google Scholar 

  • Sloper, J. J., and Powell, T. P. S., 1979, A study of the axon initial segment and proximal axon of neurons in the primate motor and somatic sensory cortices, Philos. Trans. R. Soc. London Ser. B 285: 173–197.

    Article  CAS  Google Scholar 

  • Somogyi, P., 1977, A specific “axo-axonal” interneuron in the visual cortex of the rat, Brain Res. 136: 345–350.

    Article  PubMed  CAS  Google Scholar 

  • Somogyi, P., 1979, An interneuron making synapses specifically on the axon initial segment (AIS) of pyramidal cells in the cerebral cortex of the cat, J. Physiol. (London) 296:18–19.

    Google Scholar 

  • Somogyi, P., and Cowey, A., 1981, Combined Golgi and electron microscopic study on the synapses formed by double bouquet cells in the visual cortex of the cat and monkey, J. Comp. Neurol. 195: 547–566.

    Article  PubMed  CAS  Google Scholar 

  • Somogyi, P., and Cowey, A., 1984, Double bouquet cells, in: Cerebral Cortex, Volume 1 (A. Peters and E. G. Jones, eds.), Plenum Press, New York, pp. 337–360.

    Google Scholar 

  • Somogyi, P., Cowey, A., Halasz, N., and Freund, T. F., 1981a, Vertical organization of neurones accumulating 3H-GABA in visual cortex of rhesus monkey, Nature 294: 761–763.

    Article  PubMed  CAS  Google Scholar 

  • Somogyi, P., Freund, T. F., Helasz, N., and Kisvárday, Z. F., 1981b, Selectivity of neuronal [3H]GABA accumulation in the visual cortex as revealed by Golgi staining of the labeled neurons, Brain Res. 225: 431–436.

    Article  PubMed  CAS  Google Scholar 

  • Somogyi, P., Freund, T. F., and Cowey, A., 1982, The axo-axonic interneuron in the cerebral cortex of the rat, cat and monkey, Neuroscience 7: 2577–2607.

    Article  PubMed  CAS  Google Scholar 

  • Somogyi, P., Cowey, A., Kisvárday, Z. F., Freund, T. F., and Szentágothai, J., 1983a, Retrograde transport of γ-amino[3H]butyric acid reveals specific interlaminar connections in the striate cortex of monkey, Proc. Natl. Acad. Sci. USA 80: 2385–2389.

    Article  PubMed  CAS  Google Scholar 

  • Somogyi, P., Kisvárday, Z. F., Martin, K. A. C., and Whitteridge, D., 1983b, Synaptic connections of morphologically identified and physiologically characterized large basket cells in the striate cortex of cat, Neuroscience 10: 261–294.

    Article  PubMed  CAS  Google Scholar 

  • Somogyi, P., Freund, T. F., Hodgson, A. J., Somogyi, J., Beroukas, D., and Chubb, I. W., 1985, Identified axo-axonic cells are immunoreactive for GABA in the hippocampus and visual cortex of cats, Brain Res. 332: 143–149.

    Article  PubMed  CAS  Google Scholar 

  • Stryker, M. P., Jenkins, W. M., and Merzenich, M. M., 1987, Anesthetic state does not affect the map of the hand representation within area 3b somatosensory cortex in owl monkey, J. Comp. Neurol. 258: 208–303.

    Article  Google Scholar 

  • Sur, M., Frost, D. O., and Hockfield, S., 1988, Expression of a surface-associated antigen on Y-cells in the cat lateral geniculate nucleus is regulated by visual experience, J. Neurosci. 8: 874–882.

    PubMed  CAS  Google Scholar 

  • Takeuchi, Y., and Sano, Y, 1983, Immunohistochemical demonstration of serotonin nerve fibers in the neocortex of the monkey (Macaca fuscata), Anat. Embryol. 166: 155–168.

    Article  PubMed  CAS  Google Scholar 

  • Takeuchi, Y., and Sano, Y., 1984, Serotonin nerve fibers in the primary visual cortex of the monkey quantitative and immunoelectron-microscopical analysis, Anat. Embryol. 169: 1–8.

    Article  PubMed  CAS  Google Scholar 

  • Tigges, M., Tigges, J., McDonald, J. K., Slattery, M., and Fernandes, A., 1989, Postnatal development of neuropeptide Y-like immunoreactivity in area 17 of normal and visually deprived rhesus monkeys, Visual Neurosci. 2: 315–328.

    Article  CAS  Google Scholar 

  • Tootell, R. B. H., Hamilton, S. L., and Switkes, E., 1988a, Functional anatomy of macaque striate cortex. IV. Contrast and mango-parvo streams, J. Neurosci. 8: 1594–1609.

    PubMed  CAS  Google Scholar 

  • Tootell, R. B. H., Silverman, M. S., Hamilton, S. L., and De Valois, R. L., 1988b, Functional anatomy of macaque striate cortex. V. Spatial frequency, J. Neurosci. 8: 1610–1624.

    PubMed  CAS  Google Scholar 

  • Tootell, R. B. H., Silverman, M. S., Hamilton, S. L., De Valois, R. L., and Switkes, E., 1988c, Functional anatomy of macaque striate cortex. III. Color, J. Neurosci. 8: 1569–1593.

    PubMed  CAS  Google Scholar 

  • Towns, L. C., Tigges, J., and Tigges, M., 1990, Termination of thalamic intralaminar nuclei afferents in visual cortex of squirrel monkey, Visual Neurosci. 5: 151–154.

    Article  CAS  Google Scholar 

  • Trottier, S., Geffard, M., and Evrard, B., 1989, Co-localization of tyrosine hydroxylase and GABA immunoreactivities in human cortical neurons, Neurosci. Lett. 106: 76–82.

    Article  PubMed  CAS  Google Scholar 

  • Trusk, T. C., Kaboord, W. S., and Wong-Riley, M. T. T., 1990, Effects of monocular enucleation, tetrodotoxin, and lid suture on cytochrome-oxidase reactivity in supragranular puffs of adult macaque striate cortex, Visual Neurosci. 4: 185–204.

    Article  CAS  Google Scholar 

  • Ts’o, D. Y., and Gilbert, C. D., 1988, The organization of chromatic and spatial interactions in the primate striate cortex, J. Neurosci. 8: 1712–1727.

    CAS  Google Scholar 

  • Ts’o, D. Y, Gilbert, C. D., and Wiesel, T. N., 1986, Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis, J. Neurosci. 6: 1160–1170.

    PubMed  Google Scholar 

  • Tsumoto, T, and Sato, H., 1985, GABAergic inhibition and orientation selectivity of neurons in the kitten visual cortex at the time of eye opening, Vision Res. 25: 383–388.

    Article  PubMed  CAS  Google Scholar 

  • Tsumoto, T, Masui, H., and Sato, H., 1986, Excitatory amino acid transmitters in neuronal circuits of the cat visual cortex, J. Neurophysiol. 55: 469–483.

    PubMed  CAS  Google Scholar 

  • Tsumoto, T., Hagihara, K., Sato, H., and Hata, Y., 1987, NMDA receptors in the visual cortex of kittens are more effective than those of adult cats, Nature 327: 513–514.

    Article  PubMed  CAS  Google Scholar 

  • Valverde, F., 1971, Short axon neuronal subsystems in the visual cortex of the monkey, Int. J. Neurosci. 1: 181–197.

    Article  PubMed  CAS  Google Scholar 

  • Van Brederode, J. F. M., Mulligan, K. A., and Hendrickson, A. E., 1990, Calcium-binding proteins as markers for subpopulations of GABAergic neurons in monkey striate cortex, J. Neurosci. 298: 1–22.

    Google Scholar 

  • Vulliet, P. R., Woodgett, J. R., and Cohen, P., 1984, Phosphorylation of tyrosine hydroxylase by calmodulin-dependent multiprotein kinase, J. Biol. Chem. 259: 13,680–13,683.

    PubMed  CAS  Google Scholar 

  • Wall, J. T., Kaas, J. H., Sur, M., Nelson, R. J., Felleman, D. J., and Merzenich, M. M., 1986, Functional reorganization in somatosensory cortical areas 3b and 1 of adult monkeys after median nerve repair: Possible relationships to sensory recovery in humans, J. Neurosci. 6: 218–233.

    PubMed  CAS  Google Scholar 

  • Weinberger, L. M., and Grant, F. C., 1940, Visual hallucinations and their neuro-optical correlates, Arch. Ophthalmol. 23: 166–199.

    Article  Google Scholar 

  • Werner, L., Winkelmann, E., Koglin, A., Neser, J., and Rodewohl, H., 1989, A Golgi deimpregnation study of neurons in the rhesus monkey visual cortex (areas 17 and 18), Anat. Embryol. 180: 583–597.

    Article  PubMed  CAS  Google Scholar 

  • White, N. J., 1980, Complex visual hallucinations in partial blindness due to eye disease, Br. J. Psychiatry 136: 284–286.

    Article  PubMed  CAS  Google Scholar 

  • Williams, S. M., Goldman-Rakic, P. S., and Leranth, C., 1992, The synaptology of parvalbuminimmunoreactive neurons in the primate prefrontal cortex, J. Comp. Neurol. 320: 353–369.

    Article  PubMed  CAS  Google Scholar 

  • Winfield, D. A., Rivera-Dominguez, M., and Powell, T. P. S., 1982, The termination of geniculocortical fibres in area 17 of the visual cortex in the macaque monkey, Brain Res. 231: 19–32.

    Article  PubMed  CAS  Google Scholar 

  • Wolf, W., Hicks, T. P., and Albus, K., 1986, The contribution of GABA-mediated inhibitory mechanisms to visual response properties of neurons in the kitten’s striate cortex, J. Neurosci. 6: 2779–2795.

    PubMed  CAS  Google Scholar 

  • Wong-Riley, M. T. T., and Carroll, E. W., 1984a, Effect of impulse blockage on cytochrome oxidase activity in monkey visual system, Nature 307: 262–264.

    Article  PubMed  CAS  Google Scholar 

  • Wong-Riley, M. T. T., and Carroll, E. W., 1984b, Quantitative light and electron microscopic analysis of cytochrome oxidase-rich zones in V II prestriate cortex of the squirrel monkey, J. Comp. Neurol. 222: 18–37.

    Article  PubMed  CAS  Google Scholar 

  • Wong-Riley, M. T. T., and Norton, T. T., 1988, Histochemical localization of cytochrome oxidase activity in the visual system of the tree shrew: Normal patterns and the effect of retinal impulse blockage, J. Comp. Neurol. 272: 562–578.

    Article  PubMed  CAS  Google Scholar 

  • Yamashita, A., Hayashi, M., Shimizu, K., and Oshima, K., 1989, Ontogeny of somatostatin in cerebral cortex of macaque monkey: An immunohistochemical study, Dev. Brain Res. 45: 103–111.

    Article  CAS  Google Scholar 

  • Zeki, S. M., 1970, Interhemispheric connections of prestriate cortex of monkey, Brain Res. 19: 63–75.

    Article  PubMed  CAS  Google Scholar 

  • Zezula, J., Cortea, R., Probst, A., and Palacios, J. M., 1988, Benzodiazepine receptor sites in the human brain: Autoradiographic mapping, Neuroscience 25: 771–796.

    Article  PubMed  CAS  Google Scholar 

  • Zielinski, B., and Hendrickson, A., 1990, Development of synapses in macaque monkey striate cortex shows an “inside-out” pattern, Soc. Neurosci. Abstr. 14: 494.

    Google Scholar 

  • Zinner-Feyerabend, M., and Braak, E., 1991, Glutamic acid decarboxylase (GAD)-immunoreactive structures in the adult human lateral geniculate nucleus, Anat. Embryol. 183: 111–117.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media New York

About this chapter

Cite this chapter

Jones, E.G., Hendry, S.H.C., DeFelipe, J., Benson, D.L. (1994). GABA Neurons and Their Role in Activity-Dependent Plasticity of Adult Primate Visual Cortex. In: Peters, A., Rockland, K.S. (eds) Primary Visual Cortex in Primates. Cerebral Cortex, vol 10. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-9628-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-9628-5_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-9630-8

  • Online ISBN: 978-1-4757-9628-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics