Skip to main content
Log in

A Golgi deimpregnation study of neurons in the rhesus monkey visual cortex (Areas 17 and 18)

  • Published:
Anatomy and Embryology Aims and scope Submit manuscript

Summary

The morhological features of 298 neurons impregnated according to Golgi-Kopsch in areas 17 and 18 of Macaca mulatta were analyzed, and the same neurons were deimpregnated to visualize structural details of the somata in different types of neurons. The following cell types were investigated: Pyramidal and pyramid-like cells, spiny stellate cells, double bouquet cells, bipolar cells, chandelier cells, neurogliaform cells, basket and related cells. This procedure allows the evaluation of the nuclear-cytoplasmic proportion and the position of the nucleus besides shape and size of the cell body. Pyramidal and pyramid-like cells (N=43), spiny stellate cells (N=26), basket and related cells (N=126) are variable in these features. A positive correlation between soma size and width of the cytoplasm is found in pyramidal, pyramid-like cells and spiny stellate cells. With the exception of some large somata in both these types of neurons the nucleus is found in a central position. Double bouquet cells (N=6), bipolar cells (N=13) and chandelier cells (N=11) exhibit small cytoplasmic rims and centrally located nuclei. The small somata of neurogliaform cells (N=37), however, and the small to very large somata of basket and related cells show broad cytoplasmic portions surrounding the eccentrically located nuclei. These findings allow the identification of different neuronal types in Nisslstained sections on the basis of these soma features. This is a prerequisite for further detailed quantitative studies on the laminar distribution of different neuronal types in the visual cortex of the monkey.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Braak H, Braak E (1982) A simple procedure for electron microscopy of Golgi-impregnated nerve cells. Neurosci Lett 32:1–4

    Google Scholar 

  • Brodmann K (1909) Vergleichende Lokalisationslehre der Großhirnrinde. JA Barth, Leipzig, p 110

    Google Scholar 

  • Chan-Palay V, Palay SL, Billings-Gagliardi SM (1974) Meynert cells in the primate visual cortex. J Neurocytol 3:631–658

    Google Scholar 

  • DeFelipe J, Hendry SHC, Jones EG (1986) A correlative electron microscopic study of basket cells and large GABAergic neurons in the monkey sensory motor cortex. Neuroscience 17:991–1010

    Google Scholar 

  • Fairén A, Valverde F (1979) Specific thalamo-cortical afferents and their presumptive targets in the visual cortex. A Golgi study. Prog Brain Res 51:419–438

    Google Scholar 

  • Fairén A, DeFelipe J, Regidor J (1984) Nonpyramidal neurons: General account. In: Peters A, Jones EG (eds) Cerebral Cortex, Vol 1, Plenum Press, New York and London, pp 201–253

    Google Scholar 

  • Feldman ML (1984) Morphology of the neocortical pyramidal neuron. In: Peters A, Jones EG (eds) Cerebral Cortex, Vol 1, Plenum Press, New York and London, pp 123–189

    Google Scholar 

  • Fledman ML, Peters A (1978) The forms of non-pyramidal neurons in the visual cortex of the rat. J Comp Neurol 179 761–794

    Google Scholar 

  • Hedlich A (1988) Zur morphologischen Charakteristik neuroglioformer Zellen im visuellen Cortex verschiedener Säugetiere (Ratte, Meerschweinchen, Gobi-Altai-Wüstenwühlmaus und Katze). Eine Golgi-Untersuchung. J Hirnforsch 29:707–715

    Google Scholar 

  • Hedlich A, Werner L (1986) Zur Klassifizierung der Neuronen im visuellen Cortex des Meerschweinchens (Cavia porcellus). Eine Golgi-Untersuchung. J Hirnforsch 27:651–677

    Google Scholar 

  • Hedlich A, Werner L (1988) Neuroglioforme Zellen im visuellen Cortex der Ratte. J Hirnforsch 29:107–116

    Google Scholar 

  • Hedlich A, Winkelmann E (1982) Neuronentypen des visuellen Cortex der adulten und juvenilen Ratte. J Hirnforsch 23:353–373

    Google Scholar 

  • Jones EG (1984) Neurogliaform or spiderweb cells. In: Peters A, Jones EG (eds) Cerebral Cortex, Vol 1, Plenum Press, New York and London, pp 409–418

    Google Scholar 

  • Jones EG, Hendry SCH (1984) Basket cells. In: Peters A, Jones EG (eds) Cerebral Cortex, Vol 1, Plenum Press, New York and London, pp 309–336

    Google Scholar 

  • Kisvárday ZF, Martin KAC, Whitteridge D, Somogyi P (1985) Synaptic connections of intracellularly filled clutch cells: A type of small basket cell in the visual cortex of the cat. J Comp Neurol 241:111–137

    Google Scholar 

  • Lund JS (1973) Organization of neurons in the visual cortex, Area 17, of the monkey (Macaca mulatta). J Comp Neurol 147:455–496

    Google Scholar 

  • Lund JS (1984) Spiny stellate neurons. In: Peters A, Jones EG (eds) Cerebral Cortex, Vol 1, Plenum Press, New York and London, pp 255–304

    Google Scholar 

  • Lund JS (1987) Local circuit neurons of macaque monkey striate cortex. I. Neurons of Laminae 4C and 5A. J Comp Neurol 257:60–90

    Google Scholar 

  • Lund JS, Boothe RG (1975) Interlaminar connections and pyramidal neuron organization in the visual cortex, Area 17, of the macaque monkey. J Comp Neurol 159:305–334

    Google Scholar 

  • Lund JS, Henry GH, MacQueen CH, Harvey AR (1979) Anatomical organization of the primary cortex (Area 17) of the cat. A comparison with area 17 of the macaque monkey. J Comp Neurol 184:599–618

    Google Scholar 

  • Lund JS, Hendrickson AE, Ogren MP, Tobin EA (1981) Anatomical organization of primate visual cortex area V II. J Comp Neurol 202:19–45

    Google Scholar 

  • Lund JS, Hawken MJ, Parker AJ (1988) Local circuit neurons of macaque monkey striate cortex: II. Neurons of laminae 5B and 6. J Comp Neurol 276:1–29

    Google Scholar 

  • Marin-Padilla M (1969) Origin of the pericellular baskets of the pyramidal cells of the human motor cortex: A Golgi study. Brain Res 14:633–646

    Google Scholar 

  • Marin-Padilla M, Stibitz GR (1974) Three-dimensional reconstruction of the basket cell of the human motor cortex. Brain Res 20:511–514

    Google Scholar 

  • Mates SHL, Lund JS (1983) Neuronal composition and development in lamina 4C of monkey striate cortex. J Comp Neurol 221:60–90

    Google Scholar 

  • Peters A (1984a) Chandelier cells. In: Peters A, Jones EG (eds) Cerebral Cortex, Vol 1, Plenum Press, New York and London, pp 361–380

    Google Scholar 

  • Peters A (1984b) Bipolar cells. In: Peters A, Jones EG (eds) Cerebral Cortex, Vol 1, Plenum Press, New York and London, pp 381–407

    Google Scholar 

  • Peters A (1985) The visual cortex of the rat. In: Peters A, Jones EG (eds) Cerebral Cortex, Vol 3, Plenum Press, New York and London, pp 19–18

    Google Scholar 

  • Peters A, Jones EG (eds) (1984) Cerebral Cortex. Vol 1, Plenum Press, New York and London, pp 123–189, 479–516

    Google Scholar 

  • Peters A, Kara A (1985a) The neuronal composition of area 17 of rat visual cortex. I. Pyramidal cells. J Comp Neurol 234:218–241

    Google Scholar 

  • Peters A, Kara A (1985b) The neuronal composition of area 17 of rat visual cortex. II. Non-pyramidal cells. J Comp Neurol 234:242–263

    Google Scholar 

  • Peters A, Proskauer CHC (1980) Synaptic relationship between a multipolar stellate cell and a pyramidal neuron in the rat visual cortex. A combined Golgi-electron microscope study. J Neurocytol 9:163–183

    Google Scholar 

  • Peters A, Saint Marie RL (1984) Smooth and sparsely spinous norpyramidal cells forming local axonal plexuses. In: Peters A Jones EG (eds) Cerebral Cortex, Vol 1, Plenum Press, New York and London, pp 419–445

    Google Scholar 

  • Ratnon y Cajal S (1911) Histologie du Systéme Nerveaux de l'Homme et des Vertébratés, Tome II, Maloine, Paris (Reimpress. Madrid, Instituto Cajal 1955)

  • Saint Marie RL, Peters A (1985) The morphology and synaptic connections of spiny stellate neurons in monkey visual cortex (area 17): A Golgi-electron microscopic study. J Comp Neurol 233:213–235

    Google Scholar 

  • Somogyi P, Cowey A (1984) Double bouquet cells. In: Peters A, Jones EG (eds) Cerebral Cortex, Vol 1, Plenum Press, New York and London, pp 337–360

    Google Scholar 

  • Szentágothai J (1973) Synaptology of the visual cortex. In: Autrum H, Jung R, Loewenstein WR, MacKay M, Teuber HL (eds) Handbook of Sensory Physiology VII/3, Springer, Berlin, pp 269–324

    Google Scholar 

  • Szentágothai J (1978) The neuron network of the cerebral cortex: A functional interpretation. Proc R Soc Lond B 201:219–248

    Google Scholar 

  • Tömböl T (1978) Some Golgi data on visual cortex of the rhesus monkey. Acta Morphol Acad Sci Hung 26:115–138

    Google Scholar 

  • Tömböl T (1984) Layer VI cells. In: Peters A, Jones EG (eds) Cerebral Cortex, Vol 1, Plenum Press, New York and London, pp 479–516

    Google Scholar 

  • Valverde F (1971) Short axon neuronal subsystems in the visual cortex of the monkey. Int J Neurosci 1:181–197

    Google Scholar 

  • Valverde F (1978) The organization of area 18 in the monkey. A Golgi-study. Anat Embryol 154:305–334

    Google Scholar 

  • Valverde F (1985) The organizing principles of the primary visual cortex in the monkey. In: Peters A, Jones EG (eds) Cerebral Cortex, Vol 3, Plenum Press, New York and London, pp 207–257

    Google Scholar 

  • Werner L, Brauer K (1984) Neuron types in the dorsal lateral geniculate nucleus identified in Nissl and deimpregnated Golgi preparations. J Hirnforsch 25:121–127

    Google Scholar 

  • Werner L, Hedlich A (1989) Klassifizierung von Neuronen im Nissl-Präparat und ihre Identifizierung mit Hilfe von Deimprägnationstechniken. In: Kühnel W (ed) Verh Anat Ges 82 (Anat Anz Suppl 164). VEB G Fischer, Jena, pp 871–872

    Google Scholar 

  • Werner L, Voss K (1979) Klassifizierung von Nervenzellformen der Lamina IV des visuellen Kortex der Albinoratte im Nissl-Präparat mit Hilfe der automatischen Bildverarbeitung. J Hirnforsch 20:467–473

    Google Scholar 

  • Werner L, Hedlich A, Winkelmann E, Brauer K (1979) Versuch einer Identifizierung von Nervenzellen des visuellen Kortex der Ratte nach Nissl-und Golgi-Kopsch-Darstellung. J Hirnforsch 20:121–139

    Google Scholar 

  • Werner L, Voss K, Seifert I, Neumann E (1981) Age-related classification of pyramidal and stellate cells in the rat visual cortex: A Nissl study with the “MORPHOQUANT”. J Hirnforsch 22:397–403

    Google Scholar 

  • Werner L, Voss K, Winkelmann E (1982a) Klassifizierung von Nervenzellformen im Nissl-Präparat mit Hilfe der automatischen Bildanalyse. Acta Histochem (Suppl) 26:385–391

    Google Scholar 

  • Werner L, Wilke A, Blödner R, Winkelmann E, Brauer K (1982b) Topographical distribution of neuronal types in the albino rat's area 17: A qualitative and quantitative Nissl study. Mikrosk Anat Forsch 96:433–453

    Google Scholar 

  • Werner L, Hedlich A, Winkelmann E (1985) Neuronentypen im visuellen Kortex der Ratte, identifiziert in Nissl-und deimprägnierten Golgi-Präparaten. J Hirnforsch 26:173–186

    Google Scholar 

  • Werner L, Hedlich A, Koglin A (1986a) Zur Klassifikation der Neuronen im visuellen Kortex des Meerschweinchens (Cavia porcellus). Eine kombinierte Golgi-Nissl-Untersuchung unter Einsatz von Deimprägnationstechniken. J Hirnforsch 27:213–236

    Google Scholar 

  • Werner L, Koglin A, Winiecki P (1986b) Häufigkeit und Verteilungsmodus von Neuronen in der Area 17 des Meerschweinchens (Cavia porcellus). Eine Nissl-Untersuchung identifizierter Somata. Mikrosk Anat Forsch 100:513–535

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Werner, L., Winkelmann, E., Koglin, A. et al. A Golgi deimpregnation study of neurons in the rhesus monkey visual cortex (Areas 17 and 18). Anat Embryol 180, 583–597 (1989). https://doi.org/10.1007/BF00300556

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00300556

Key words

Navigation