Skip to main content

A Historical Evaluation of Adventitious Rooting Research to 1993

  • Chapter
Biology of Adventitious Root Formation

Part of the book series: Basic Life Sciences ((BLSC,volume 62))

Abstract

Vegetative propagation of plants by rooting of cuttings (cuttage) was successfully used hundreds of years before there was any study, much less understanding, of the underlying biological processes. For some species, cuttage was old practice even in antiquity, as evidenced in the writings of Aristotle (384–322 B.C.), Theophrastus (371–287 B.C.) and Pliny the Elder (23–79 A.D.). But cuttage was never successful enough to fulfill all then-current public and commercial demands and it still is not [e.g, see chapter by Howard in this volume]. In addition, organ formation has long been a study area within plant morphogenesis (Went and Thimann, 1937), which has made adventitious rooting of academic botanical interest. Hence research on the fundamental biology of adventitious rooting began and continues.

But my course and method, as I have often clearly stated and would wish to state again, is this—not to extract works from works or experiments from experiments (as an empiric), but from works and experiments to extract causes and axioms, and again from those causes and axioms new works and experiments, as a legitimate interpreter of nature... — Francis Bacon, 1620

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anon., 1941, Factors affecting the vegetative propagation of forest trees, For. Abs. 3:3.

    Google Scholar 

  • Altman, A., and Wareing, P.F., 1975, The effect of IAA on sugar accumulation and basipetal transport of 14C-labelled assimilates in relation to root formation in Phaseolus vulgaris cuttings, Physiol Plant. 33:33.

    Article  Google Scholar 

  • Aucher, E.C., 1930, American experiments in propagating deciduous fruit trees by stem and root cuttings, in: “Rept. and Proc. 9th Int. Hortic. Cong.,” p. 287.

    Google Scholar 

  • Avery, G.S., and Johnson, E.B., 1947, “Hormones and Horticulture,” McGraw-Hill Book Co., New York.

    Google Scholar 

  • Bachelard, E.P., and Stowe, B.B., 1963, Rooting of cuttings of Acer rubrum L. and Eucalyptus camaldulensis Dehn, Aust. J. Biol. Sci. 16:16.

    Google Scholar 

  • Bacon, F., 1620, “The New Organon,” F.H. Anderson, ed., The Library of Library of Liberal Arts, The Bobbs-Merrill Co., Inc., New York.

    Google Scholar 

  • Balasimha, D., and Subramonian, N., 1983, Roles of phenolics in auxin induced rhizogenesis & isoperoxidases in cacao (Theobroma cacao L.) stem cuttings, Indian J. Exp. Biol. 21:21.

    Google Scholar 

  • Balfour, L.B., 1913, Problems of propagation, J. Roy. Hortic. Soc. 38:38.

    Google Scholar 

  • Barlow, P.W., 1986, Adventitious roots of whole plants: their forms, functions, and evolution, in: “New Root Formation in Plants and Cuttings,” M.B. Jackson, ed., Martinus Nijhoff Pubs., Dordrecht.

    Google Scholar 

  • Basu, R.N., Ghosh, B., and Sen, P.K., 1968, Naturally occurring rooting factors in mango (Mangifera indica L.), Indian Agric. 12:12.

    Google Scholar 

  • Basu, R.N., Roy, B.N., and Böse, T.K., 1970. Interaction of abscisic acid and auxins in rooting of cuttings, Plant Cell Physiol. 11:681.

    CAS  Google Scholar 

  • Becker, D., Sahali, Y., and Raviv, M., 1990, The absolute configuration effect on the activity of the avocado rooting promoter, Phytochem. 29:2065.

    Article  CAS  Google Scholar 

  • Beijerinck, M.W., 1886, Beobachtungen und Betrachtungen über Wurzelknospen und Nebenwurzeln, Verz. Geschr. 11:11.

    Google Scholar 

  • Beveridge, W.I.B., 1957, “The Art of Scientific Investigation,” W.W. Norton & Co., Inc., New York.

    Google Scholar 

  • Biran, L, and Halevy, A.H., 1973, Endogenous levels of growth regulators and their relationship to the rooting of Dahlia cuttings, Physiol Plant. 28:28.

    Article  Google Scholar 

  • Blazich, F.A., 1988, Chemicals and formulations used to promote adventitious rooting, in: “Adventitious Root Formation by Cuttings,” T.D. Davis, B.E. Haissig, and N. Sankhla, eds., Adv. in Plant Sci. Ser., vol. 2, Dioscorides Press, Portland, p. 132.

    Google Scholar 

  • Bloch, R., 1943a, Polarity in plants, Bot. Rev. 9:261.

    Article  Google Scholar 

  • Bloch, R., 1943b, The problem of polarity in plant morphogenesis, Chron. Bot. 7:297.

    Google Scholar 

  • Bloch, R., 1965, Polarity and gradients in plants: A survey, Handb. D. Pflanzenphysiol. 15:15.

    Google Scholar 

  • Bojarczuk, K., 1978, Studies on endogenous rhizogenic substances during the process of rooting lilac Syringa vulgaris L.) cuttings, Plant Prop. 24:24.

    Google Scholar 

  • Bollmark, M., and Eliasson, L., 1990, A rooting inhibitor present in Norway spruce seedlings grown at high irradiance-a putative cytokinin, Physiol. Plant. 80:527.

    Article  CAS  Google Scholar 

  • Bollmark, M., Kubat, B., and Eliasson, L., 1988, Variation in endogenous cytokinin content during adventitious root formation in pea cuttings, J. Plant Physiol. 132:262.

    Article  CAS  Google Scholar 

  • Bondi, H., 1992, The philosopher of science, Nature 358:358.

    Article  Google Scholar 

  • Bonner, J., Huang, R.C., and Gilden, R.V., 1963, Chromosomally directed protein synthesis, Proc. Nat. Acad. Sci. USA 50:50.

    Article  Google Scholar 

  • Böttger, I., and Lüdemann, I., 1964, Über die Bildung einer stoffwechsel-aktiven Ribonucleinsäurefraktion in isolierten Blättern von Euphorbia pulcherrima zu Beginn der Wurzelregeneration, Flora 155:155.

    Google Scholar 

  • Bouillenne, R., and Bouillenne-Walrand, M., 1939, Teneur en auxines des plantules et hypocotyles inanitiés de “Impatiens Balsamina” L. en rapport avec l’organogénèse des racines, Bull. Acad. Roy. Belg. 16:473.

    Google Scholar 

  • Bouillenne, R. and Bouillenne-Walrand, M., 1947, Détermination des facteurs de la rhizogénèse. Bull. Acad. Roy. Belg. 33:33.

    Google Scholar 

  • Bouillenne, R., and Bouillenne-Walrand, M., 1955, Auxins et bouturage, in: “Proc. 14th Int. Hortic. Cong.,” 1:231.

    CAS  Google Scholar 

  • Bouillenne, R., and Went, F., 1933, Recherches expérimentales sur la néoformation des racines dans les plantules et les boutures des plantes supérieures, Ann. Jard. Bot. Buitenzorg 43:43.

    Google Scholar 

  • Brian, P.W., Hemming, H.G., and Lowe, D., 1960, Inhibition of rooting of cuttings by gibberellic acid, Ann. Bot. 24:24.

    Google Scholar 

  • Brian, P.W., Hemming, H., and Radley, M., 1955, A physiological comparison of gibberellic acid with some auxins, Plant Physiol. 8:8.

    Article  Google Scholar 

  • Breen, P.J., and Muraoka, T., 1973, Effect of indolebutryic acid on distribution of 14C-photosynthate in softwood cuttings of’ Marianna 2624’ plum, J. Amer. Soc. Hortic. Sci. 98:98.

    Google Scholar 

  • Breen, P.J., and Muraoka, T., 1974, Effect of leaves on carbohydrate content and movement of 14C-assimilate in plum cuttings, J. Amer. Soc. Hortic. Sci. 99:99.

    Google Scholar 

  • Bunge, M., 1967, “Scientific Research I, The Search for System,” and “II, The Search for Truth,” Springer-Verlag, New York.

    Google Scholar 

  • Büsgen, M., and Münch, E., 1929, “The Structure and Life of Forest Trees,” 3rd ed., English trans. by T. Thomson, John Wiley & Sons, Inc., New York.

    Google Scholar 

  • Carlson, M.C., 1929, Microchemical studies of rooting and non-rooting rose cuttings, Bot. Gaz. 87:87.

    Google Scholar 

  • Carlson, M.C., 1938, The formation of nodal adventitious roots in Salix cordata, Amer. J. Bot. 25:25.

    Article  Google Scholar 

  • Carlson, M.C., 1950, Nodal adventitious roots in willow stems of different ages, Amer. J. Bot. 37:555.

    Article  Google Scholar 

  • Challenger, S., Lacey, H.J., and Howard, B.H., 1965, The demonstration of root promoting substances in apple and plum rootstocks, in: “Rep. East Maillng Res. Sta. for 1964,” p. 124.

    Google Scholar 

  • Chamberlin, T.C., 1897, Studies for students, The method of multiple working hypotheses, J. Geol. 5(8):837; reprinted as “Multiple Hypotheses, A Method for Research, Teaching, and Creative Thinking,” Inst. for Humane Studies, Inc., Stanford.

    Article  Google Scholar 

  • Chin, T., Meyer, M.M., Jr., and Beevers, L., 1969, Abscisic acid-stimulated rooting of stem cuttings, Planta 88:88.

    Article  Google Scholar 

  • Choong, L.I., McGuire, J.L., and Kitchin, J.T., 1969, The relationship between rooting cofactors and easy and difficult-to-root cuttings of three clones of Rhododendron, J. Amer. Soc. Hortic. Sci. 94:94.

    Google Scholar 

  • Claudot, A.C., Jay-Allemand, C., Magel, E.A., and Drouet, A., 1993, Phenylalanine ammonia-lyase, chalcone synthase and polyphenolic compounds in adult and rejuvenated hybrid walnut tree [sic], Trees 7:92–97.

    Article  Google Scholar 

  • Cooper, W.C., 1935, Hormones in relation to root formation on stem cuttings, Plant Physiol. 10:10.

    Article  Google Scholar 

  • Cooper, W.C., 1936, Transport of root-forming hormone in woody cuttings, Plant Physiol. 11:11.

    Article  Google Scholar 

  • Cooper, W.C., 1938, Hormones and root formation, Bot. Gaz. 99:99.

    Google Scholar 

  • Corbett, L.C., 1897, The development of roots from cuttings, Meehans Monthly 7:7.

    Google Scholar 

  • Crocker, W., Hitchcock, A.E., and Zimmerman, P.W., 1935, Similarities in the effects of ethylene and the plant auxins, Contrib. Boyce Thomp. Inst. 7:7.

    Google Scholar 

  • Curtis, O.F., 1918, “Stimulation of Root Growth in Cuttings by Treatment with Chemical Compounds,” Cornell Univ. Agric. Exp. Sta. Mem. 14, New York.

    Google Scholar 

  • Darwin, C., 1859, “The Origin of Species,” reprinted by The Modern Library, New York.

    Google Scholar 

  • Davies, P.J., 1988, The plant hormones: their nature, occurrence, and functions, in: “Plant Hormones and Their Role in Plant Growth and Development,” P.J. Davies, ed., Academic Pubs., Dordrecht.

    Google Scholar 

  • Davis, T.D., and Haissig, B.E., 1990, Chemical control of adventitious root formation in cuttings, Plant Growth Reg. Soc. Amer. Quart. 18(1): 1.

    Google Scholar 

  • Davis, T.D., and Sankhla, N., 1988, Effect of shoot growth retardants and inhibitors on adventitious rooting, in: “Adventitious Root Formation by Cuttings,” T.D. Davis, B.E. Haissig, and N. Sankhla, eds., Adv. in Plant Sci. Sen, vol. 2, Dioscorides Press, Portland, p. 174.

    Google Scholar 

  • Davis, T.D., Haissig, B.E., and Sankhla, N., eds., 1988, “Adventitious Root Formation in Cuttings,” Dioscorides Press, Portland.

    Google Scholar 

  • De Bary, A., 1884, “Comparative anatomy of phanerogams and ferns,” English trans. by F.O. Bower, and D.H. Scott, Clarendon Press, Oxford.

    Google Scholar 

  • De Candolle, A.-P., 1825, Premier mémoire sur les lenticelles des arbres et le développement des racines qui en sortent, Ann. Sci. Nat., p. 5.

    Google Scholar 

  • De Candolle, A.-P., 1832, “Physiologie Végétale, ou Exposition des Forces et des Fonctions Vitales des Végétaux,” vols. 1 and 2, Béchet Jeune, Lib. Fac. Med., Paris.

    Google Scholar 

  • De Haan, I., 1936, Polar root formation, Rec. Trav. Bot. Néerl. 33:33.

    Google Scholar 

  • Deuber, C.G., 1940, Vegetative propagation of conifers, Trans. Conn. Acad. Arts and Sci. 43:43.

    Google Scholar 

  • Devaux, H., 1899, Asphixie spontanée et production d’alcool dans les tissus profonds des tiges ligneuses poussant dans les conditions naturelles, C.R. Acad. Sci. Paris 128:1346.

    CAS  Google Scholar 

  • Dick, J. McP., and Dewar, R.C., 1992, A mechanistic model of carbohydrate dynamics during adventitious root development in leafy cuttings, Ann. Bot. 70:70.

    Google Scholar 

  • Diels, L., 1906, “Jugendformen und Blütenreife,” Gebrüder Borntraeger Verlag, Berlin.

    Google Scholar 

  • Driesch, H., 1901, “Die organisechen Regulationen,” Leipzig.

    Google Scholar 

  • Duhamel du Monceau, H.L., 1758, “La Physique des Arbres,” Vols. I and II, Guerin and Delatour, Paris.

    Google Scholar 

  • Dunn, S., and Townsend, R.J., 1954, Propagation of sugar maple from vegetative cuttings, J. For. 52:52.

    Google Scholar 

  • Esau, K., 1977, “Anatomy of Seed Plants,” John Wiley & Sons, Inc., New York.

    Google Scholar 

  • Fadl, M.S., and Hartmann, H.T., 1967a, Relationship between seasonal changes in endogenous promoters and inhibitors in pear buds and cutting bases and the rooting of pear hardwood cuttings, Proc. Amer. Soc. Hortic. Sci. 91:96–112.

    Google Scholar 

  • Fadl, M.S., and Hartmann, H.T., 1967b, Isolation, purification, and characterization of an endogenous root-promoting factor obtained from basal sections of pear hardwood cuttings, Plant Physiol. 42:541.

    Article  PubMed  CAS  Google Scholar 

  • Fellenberg, G., 1965, Hemmung der Wurzelbildung an etiolierten Erbsenepikotylen durch Bromuracil und Histon, Planta 64:64.

    Article  Google Scholar 

  • Fellenberg, G., 1966, Die Hemmung auxininduzierter Wurzelbildung an etiolierten Erbsenepikotylen mit Histon und Antimetaboliten der RNS-und Proteinsynthese, Planta 71:71.

    Article  Google Scholar 

  • Fellenberg, G., 1967, Möglichkeiten der Regulierung differentieller DNS-Aktivitäten bei höheren Pflanzen durch Histon, Planta 76:76.

    Article  Google Scholar 

  • Fellenberg, G., 1969a, Veränderungen des Nucleoproteids von Erbsenepikotylen durch synthetische Auxine bei der Induktion der Wurzelneubildung, Planta 84:195.

    Article  CAS  Google Scholar 

  • Fellenberg, G., 1969b, Veränderungen des Nucleoproteids unter dem Einfluss von Auxine und Ascorbinsäure bei der Wurzelneubildung an Erbsenepikotylen, Planta 84:324.

    Article  CAS  Google Scholar 

  • Fellenberg, G., 1969c, Hemmung der Wurzelneubildung durch saure und neutrale Kernproteine, Planta 86:165.

    Article  CAS  Google Scholar 

  • Fernqvist, L, 1966, Studies on factors in adventitious root formation, Ann. Agric. Coll. Sweden 32:32.

    Google Scholar 

  • Fischnich, O., 1935, Über den Einfluss von ß-Indolylessigsäure auf die Blattbewegungen und die Adventivwurzelbildung von Coleus, Planta 24:24.

    Article  Google Scholar 

  • Fitting, H., 1909, Die Beeinflussung der Orchideenblüten durch die Bestäubung und durch andere Umstände, Zeit. Planzenphysiol. 1:1.

    Google Scholar 

  • Fitting, H., 1910, Weitere entwicklungsphysiologische Untersuchungen an Orchideenblüten, Zeit. Pflanzenphysiol. 2:2.

    Google Scholar 

  • Gardner, F.E., 1929, The relationship between tree age and the rooting of cuttings, Proc. Amer. Soc. Hortic. Sci. 26:26.

    Google Scholar 

  • Gaspar, T., Smith, D., and Thorpe, T., 1977, Arguments supplémentaires en faveur d’une variation inverse du niveau auxinique endogène au cours des deux premières phases de la rhizogénèse, C.R. Acad. Sci. Paris 285:285.

    Google Scholar 

  • Geissbühler, H., and Skoog, F., 1957, Comments on the application of plant tissue cultivation to propagation of forest trees, TAPPI 40:40.

    Google Scholar 

  • Geneve, R.L., Mokhtari, M., and Hackett, W.P. 1991. Adventitious root initiation in reciprocally grafted leaf cuttings from the juvenile and mature phase of Hedera helix L., J. Exp. Bot. 42:65.

    Article  Google Scholar 

  • Gesto, M.D.V., Vazques, A., and Vieitez, E., 1981, Changes in the rooting inhibitory effect of chestnut extracts during cold storage of the cuttings, Physiol. Plant. 51:51.

    Article  Google Scholar 

  • Girouard, R.M., 1967, Anatomy of adventitious root formation in stem cuttings, in: “Proc. Int. Plant Prop. Soc. Annu. Meeting,” 1967:289.

    Google Scholar 

  • Girouard, R.M., 1969, Physiological and biochemical studies of adventitious root formation, Extractable rooting cofactors from Hedera helix. Can. J. Bot. 47:47.

    Article  Google Scholar 

  • Goebel, K., 1889, Ueber die Jugenzustände der Pflanzen, Flora 72:72.

    Google Scholar 

  • Goebel, K., 1898-1901, “Organographie der Pflanzen,” Gustav Fischer Verlag, Jena.

    Google Scholar 

  • Goebel, K., 1902, Ueber Regeneration im Pflanzenreich, Biol. Centralbl. 22:22.

    Google Scholar 

  • Goebel, K., 1903a, Regeneration in plants, Bull. Torrey Bot. Club 30:197.

    Article  Google Scholar 

  • Goebel, K., 1903b, Morphologische und biologische Bemerkungen, 14. Weitere Studien über Regeneration, Flora 92:132.

    Google Scholar 

  • Goebel, K., 1903c, Studien ueber Regeneration, Flora 92:132.

    Google Scholar 

  • Goebel, K., 1905a, “Organography of Plants Especially of the Archegoniatae and Spermatophyta,” English edition by I.B. Balfour, Clarendon Press, Oxford.

    Google Scholar 

  • Goebel, K., 1905b, Allgemeine Regenerationsprobleme, Flora 95:384.

    Google Scholar 

  • Goodwin, R.H., and Goddard, D.R., 1940, The oxygen consumption of isolated woody tissues, Amer. J. Bot. 27:27.

    Article  Google Scholar 

  • Grace, N.H., 1937, Physiologic curve of response to phytohormones by seeds, growing plants, cuttings, and lower plant forms, Can. J. Res. 15(C):538.

    Article  Google Scholar 

  • Grace, N.H., 1945, Liberation of growth stimulating materials by rooting Salix cuttings, Can. J. Res. 23(C):85.

    Article  Google Scholar 

  • Gregory, L.E., and van Overbeek, J., 1945, An analysis of the process of root formation on cuttings of a difficult hibiscus variety, Proc. Amer. Soc. Hortic. Sci. 46:46.

    Google Scholar 

  • Groff, P.A., and Kaplan, D.R., 1988, The relation of root systems to shoot systems in vascular plants, Bot. Rev. 54:54.

    Article  Google Scholar 

  • Guillot, A., 1965, Action de la 2-thiouracile sur la rhizogénèse dans les boutures de plantules étiolées de tomate, Planta 67:67.

    Article  Google Scholar 

  • Guillot, A., 1971, Action de la 5-bromouracile et de ses nucléosides sur la morphogénèse des boutures de plantules étiolées 2-thiouracile sur la rhizogénèse dan les boutures de plantules étiolées de tomate, Planta 67:67.

    Google Scholar 

  • Guillot, A., 1972, Action de la désoxyuridine sur l’inhibition de la rhizogénèse et de la croissance de l’hypocotyle observée en présence de 5-bromodésoxyuridine chez le boutures de plantules étiolées de tomate, Planta 102:102.

    Google Scholar 

  • Haagen-Smit, A.J., Dandliker, W.B., Wittwer, S.H., and Murneek, A.E., 1946, Isolation of 3-indoleacetic acid from immature corn kernels, Amer. J. Bot. 33:33.

    Article  Google Scholar 

  • Haberlandt, G., 1914, Zur Physiologie der Zellteilung, Sitz. Ber. K. Preuss. Akad. Wiss. 1914:1914.

    Google Scholar 

  • Hackett, W.P., 1970, The influence of auxin, catechol and methanolic tissue extracts on root initiation in aseptically cultured shoot apices of the juvenile and adult forms of Hedera helix, J. Amer. Soc. Hortic. Sci. 95:95.

    Google Scholar 

  • Hackett, W.P., 1988, Donor plant maturation and adventitious root formation, in: “Adventitious Root Formation by Cuttings,” T.D. Davis, B.E. Haissig, and N. Sankhla, eds., Advances in Plant Sciences Series, vol. 2, Dioscorides Press, Portland, p. 11.

    Google Scholar 

  • Hagemann, A., 1932, Untersuchungen an Blattstecklingen. Gartenbauwiss. 6:6.

    Google Scholar 

  • Haffner, V., Enjalric, F., Lardet, L., and Carron, M.P., 1991, Maturation of woody plants: a review of metabolic and genomic aspects, Ann. Sci. For. 48:48.

    Article  Google Scholar 

  • Haissig, B.E., 1965, Organ formation in vitro as applicable to forest tree propagation, Bot. Rev. 31:31.

    Article  Google Scholar 

  • Haissig, B.E., 1970, Influence of indole-3-acetic acid on adventitious root primordia of brittle willow, Planta 95:95.

    Article  Google Scholar 

  • Haissig, B.E., 1971, Influences of indole-3-acetic acid on incorporation of 14C-uridine by adventitious root primordia of brittle willow, Bot. Gaz. 132:132.

    Article  Google Scholar 

  • Haissig, B.E., 1972, Meristematic activity during adventitious root primordium development, Influences of endogenous auxin and applied gibberellic acid, Plant Physiol. 49:49.

    Article  Google Scholar 

  • Haissig, B.E., 1974a, Origins of adventitious roots, N.Z. J. For. Sci. 4:299.

    Google Scholar 

  • Haissig, B.E., 1974b, Influences of auxins and auxin synergists on adventitious root primordium initiation and development, N.Z. J. For. Sci. 4:311.

    CAS  Google Scholar 

  • Haissig, B.E., 1982a, Carbohydrate and amino acid concentrations during adventitious root primordium development in Pinus banksiana Lamb. cuttings, For. Sci. 28:813.

    Google Scholar 

  • Haissig, B.E., 1982b, Activity of some glycolytic and pentose phosphate pathway enzymes during the development of adventitious roots, Physiol. Plant. 55:261.

    Article  CAS  Google Scholar 

  • Haissig, B.E., 1986, Metabolic processes in adventitious rooting, in: “New Root Formation in Plants and Cuttings,” M.B. Jackson, ed., Martinus Nijhoff Pubs., Dordrecht, p. 141.

    Google Scholar 

  • Haissig, B.E., 1988, Future directions in adventitious rooting research, in: “Adventitious Root Formation by Cuttings,” T.D. Davis, B.E. Haissig, and N. Sankhla, eds., Adv. in Plant Sci. Ser., vol. 2, Dioscorides Press, Portland, p. 303.

    Google Scholar 

  • Haissig, B.E., and Riemenschneider, D.E., 1988, Genetics of adventitious rooting, in: “Adventitious Root Formation by Cuttings,” T.D. Davis, B.E. Haissig, and N. Sankhla, eds., Adv. in Plant Sci. Ser., vol. 2, Dioscorides Press, Portland, p. 47.

    Google Scholar 

  • Haissig, B.E., and Riemenschneider, D.E., 1992, The original basal stem section influences rooting in Pinus banksiana, Physiol. Plant. 86:86.

    Article  Google Scholar 

  • Haissig, B.E., Davis, T.D., and Riemenschneider, D.E., 1992, Researching the controls of adventitious rooting, Physiol. Plant. 84:84.

    Article  Google Scholar 

  • Hansen, J., 1988, Influence of gibberellins on adventitious root formation, in: “Adventitious Root Formation by Cuttings,” T.D. Davis, B.E. Haissig, and N. Sankhla, eds., Adv. in Plant Sci. Ser., vol. 2, Dioscorides Press, Portland, p. 162.

    Google Scholar 

  • Harder, R., Schumacher, W., Firbas, F., and Denffer, D. von, 1965, “Strasburger’s Textbook of Botany,” English trans. by P. Bell, and D. Coombe, Longmans, Green and Co., Ltd., London.

    Google Scholar 

  • Hartmann, H.T., Kester, D.E., and Davies, F.T., Jr., 1990, “Plant Propagation, Principles and Practices,” Prentice-Hall, Inc., Englewood Cliffs.

    Google Scholar 

  • Hartsema, A.M., 1924, Anatomische und experimentelle Untersuchungen über das Auftreten von Neubildungen an Blättern von Begonia rex, Rec. Trav. Bot. Néerl. 23:23.

    Google Scholar 

  • Hatton, R.G., 1930, Stock: scion relationships, J. Roy. Soc. Hortic. Sci. 55(11): 169.

    Google Scholar 

  • Heide, O.M., 1965, Interaction of temperature, auxins, and kinins in the regeneration ability of Begonia leaf cuttings, Physiol. Plant. 18:18.

    Google Scholar 

  • Hess, C.E., 1959, A study of plant growth substances in easy and difficult-to-root cuttings, in: “Proc. 9th Annu. Intl. Plant Prop. Soc,” p. 39.

    Google Scholar 

  • Hess, C.E., 1960, Research in root initiation — a progress report, in: “Proc. 10th Annu. Meeting Plant Prop. Soc,” p. 118.

    Google Scholar 

  • Hess, C.E., 1961, The physiology of root initiation in easy-and difficult-to-root cuttings, Hormolog 3:3.

    Google Scholar 

  • Hess, C.E., 1962, Characterization of the rooting cofactors extracted from Hedera helix L. and Hibiscus rosa-sinensis L., in: “Proc. Int. Plant Prop. Soc.,” 1961:51.

    Google Scholar 

  • Heuser, C.W., 1988, Bioassay, immunoassay, and verification of adventitious root promoting substances,” in: “Adventitious Root Formation by Cuttings,” T.D. Davis, B.E. Haissig, and N. Sankhla, eds., Adv. in Plant Sci. Ser., vol. 2, Dioscorides Press, Portland, p. 274.

    Google Scholar 

  • Hicks, P.A., 1928, Chemistry of growth as represented by carbon/nitrogen ratio, Regeneration of willow cuttings, Bor. Gaz. 86:86.

    Google Scholar 

  • Hinds, H.V., ed., 1974, “Special Issue on Vegetative Propagation,” N.Z. J. For., vol. 4, no. 2.

    Google Scholar 

  • Hitchcock, A.E., 1935a, Tobacco as a test plant for comparing the effectiveness of preparations containing growth substances, Contrib. Boyce Thomp. Inst. 7:349.

    CAS  Google Scholar 

  • Hitchcock, A.E., 1935b, Indole-3-n-propionic acid as a growth hormone and the quantitative measurement of plant response, Contrib. Boyce Thomp. Inst. 7:87.

    CAS  Google Scholar 

  • Hitchcock, A.E., and Zimmerman, P.W., 1931, Rooting of greenwood cuttings as influenced by the age of tissue at the base, Proc. Amer. Soc. Hortic. Sci. 27:136.

    Google Scholar 

  • Hitchcock, A.E., and Zimmerman, P.W., 1932, Relation of rooting response to age of tissue at the base of greenwood cuttings, Contrib. Boyce Thomp. Inst. 4:4.

    Google Scholar 

  • Hitchcock, A.E., and Zimmerman, P.W., 1936, Effect of growth substances on the rooting response of cuttings, Contrib. Boyce Thomp. Inst. 8:8.

    Google Scholar 

  • Humphries, E.C., 1960, Inhibition of root development on petioles and hypocotyls of dwarf bean (Phaseolus vulgaris) by kinetin, Physiol. Plant. 13:13.

    Google Scholar 

  • Hutchins, R.M., ed., 1953, “Francis Bacon. Advancement of Learning, Novum Organum, New Atlantis,” in: “Great Books of the Western World,” Encyclopedia Britannica, Inc., Chicago.

    Google Scholar 

  • Jackson, M.B., ed., 1986, “New Root Formation in Plants and Cuttings,” Martinus Nijhoff Pubs., Dordrecht.

    Book  Google Scholar 

  • Jackson, M.B., and Harney, P.M., 1970, Rooting cofactors, indoleacetic acid and adventitious root initiation in mung bean cuttings (Phaseolus aureus), Can. J. Bot. 48:48.

    Google Scholar 

  • Jacob, F., and Monod, J., 1961, Genetic regulatory mechanisms in the synthesis of proteins, J. Mol. Biol. 3:3.

    Article  Google Scholar 

  • Jacobs, W.P., 1979, “Plant Hormones and Plant Development,” Cambridge Univ. Press, Cambridge.

    Google Scholar 

  • Jones, A.M., 1990, Do we have the auxin receptor yet?, Physiol. Plant. 80:80.

    Article  Google Scholar 

  • Julliard, J., Sotta, B., Pelletier, G., and Miginiac, E., 1992, Enhancement of naphthaleneacetic acid-induced rhizogenesis in TL-DNA-transformed Brassica napus without significant modification of auxin levels and auxin sensitivity, Plant Physiol. 100:100.

    Article  Google Scholar 

  • Kato, J., 1958, Studies on the physiological effect of gibberellin, II. On the interaction of gibberellin with auxins and growth inhibitors, Physiol. Plant. 11:11.

    Google Scholar 

  • Kawase, M., 1964, Centrifugation, rhizocaline and rooting in Salix alba L., Physiol. Plant. 17:17.

    Article  Google Scholar 

  • Kawase, M., 1970, Root-promoting substances in Salix alba, Physiol. Plant. 23:23.

    Article  Google Scholar 

  • Kawase, M., 1981, A “dream” chemical to aid propagation of woody plants, Ohio Rept. 66(1):8.

    Google Scholar 

  • Klebs, G., 1903, “Willkürliche Entwicklungsänderungen bei Pflanzen,” Gustav Fischer Verlag, Jena.

    Book  Google Scholar 

  • Knight, T.A., 1809, On the origin and formation of roots, Roy. Soc. Philos., pt. 1, p. 16., Reprinted: Sq. Q. London, 1809.

    Google Scholar 

  • Kögl, F., Haagen-Smit, J.A., and Erxleben, H., 1934, Über ein neues Auxin (“Hetero-auxin”) aus Harn, 11. Mitteilung über planzliche Wachstumsstoffe, Hoppe-Seylers Zeit. Physiol. Chem. 228:228.

    Google Scholar 

  • Kraft, J.C., Shepard, T., and Juchau, M.R., 1993, Tissue levels of retinoids in human embryos/fetuses, Reprod. Toxicol. 7:11–15.

    Article  PubMed  CAS  Google Scholar 

  • Kraus, E.J., and Krabill, H.R., 1918, “Vegetation and Reproduction with Special Reference to Tomato,” Oregon Agric. Coll. Exp. Sta. Bull. 149.

    Google Scholar 

  • Kraus, E.J., Brown, N.A., and Hamner, K.C., 1936, Histological reactions of bean plants to indoleacetic acid, Bot. Gaz. 98:98.

    Article  Google Scholar 

  • Krenke, N.P., 1933, “Wundkompensation, Transplantation und Chimären bei Pflanzen. Monographie aus dem Gesamtgebiet der Physiologie der Pflanzen und der Tiere,” trans. from Russian, J. Springer-Verlag, Berlin.

    Google Scholar 

  • Kühne, W. von, 1878, Erfahrungen und Bemerkungen über Enzyme und Fermente, Heidelberg Univ. Physiol. Inst. Unters. 1:1.

    Google Scholar 

  • Kunkel, A., 1878, Ueber elektromotorische Wirkungen an unverletzten lebenden Pflanzentheilen, Arb. Deutsh Bot. Inst. Würzburg 2:2.

    Google Scholar 

  • Kunkel, A., 1879, Ueber einige Eigentümlichkeiten des elektrishen Leitungsvermögens lebender Pflanzentheile, Arb. Deutsch Bot. Inst. Würzburg 2:333.

    Google Scholar 

  • Kupfer, E., 1907, Studies of plant regeneration, Mem. Torrey Bot. Club. 12:12.

    Google Scholar 

  • Küster, E., 1903, Beobachtungen über Regenerationserscheinungen an Pflanzen, Beih. Bot. Centralbl. 14:14.

    Google Scholar 

  • Larson, P.R., 1975, Development and organization of the primary vascular system in Populus deltoides according to phyllotaxy, Amer. J. Bot. 62:62.

    Article  Google Scholar 

  • Larson, P.R., 1979, Establishment of the vascular system in seedling of Populus deltoides Bartr., Amer. J. Bot. 66:66.

    Article  Google Scholar 

  • Larson, P.R., 1980, Interrelations between phyllotaxis, leaf development and the primary-secondary transition in Populus deltoides, Ann. Bot. 46:46.

    Google Scholar 

  • Lee, C.I., 1971, “Influence of Intermittent Mist on the Development of Anthocyanins and Root-Inducing Substances in Euonymus alatus (Sieb.) ‘Compactas,’ Ph.D. thesis, Cornell Univ., No. 72-8957, Univ. Microfilms Int., Ann Arbor.

    Google Scholar 

  • Lee, C.I., McGuire, J.J., and Kitchin, J.T., 1969, The relationship between rooting cofactors of easy and difficult-to-root cuttings of three clones of Rhododendron, J. Amer. Soc. Hortic. Sci. 94:94.

    Google Scholar 

  • Lemaire, A., 1886, Recherches sur l’origine et le developpement des racines laterales chez les dicotyledones, Ann. Sci. Nat. Ser. VII Bot. 3:3.

    Google Scholar 

  • Letham, D.S., 1963, Zeatin, a factor inducing cell division isolated from Zea mays, Life Sci. No. 8, p. 569.

    Google Scholar 

  • Libbert, E., 1956, Untersuchungen über die Physiologie der Adventivwurzelbildung, I. Die Wirkungsweise einiger Komponenten des Rhizocalinkomplexes, Flora 144:144.

    Google Scholar 

  • Linser, H., 1940, Über das Vorkommen von Hemmstoff in Pflanzenextrakten, sowie über das Verhältnis von Wuchsstoffgehalt und Wuchsstoffabgabe bei Pflanzen oder Planzenteilen, Planta 31:31.

    Article  Google Scholar 

  • Linser, H., 1948, Über den Einfluß von Pflanzenextrakten auf das Streckungswachstum, Wurzel-und Sproßbildung bei Planzen, Ost. Bot. Zeit. 95:95.

    Article  Google Scholar 

  • Lipecki, J., and Dennis, F.G., 1972, Growth inhibitors and rooting cofactors in relation to rooting response of softwood apple cuttings, HortSci. 7:7.

    Google Scholar 

  • Loeb, J., 1917a, Influence of the leaf upon root formation and geotropic curvature in the stem of Bryophyllum calycinum and the possibility of a hormone theory of these processes, Bot. Gaz. 63:25.

    Article  Google Scholar 

  • Loeb, J., 1917b, The chemical basis of axial polarity in regeneration, Science 46:547.

    Article  PubMed  CAS  Google Scholar 

  • Loeb, J., 1919a, The physiological basis of morphological polarity in regeneration. I., J. Gen. Physiol. 1:337.

    Article  PubMed  CAS  Google Scholar 

  • Loeb, J., 1919b, The physiological basis of morphological polarity in regeneration. II., J. Gen. Physiol. 1:687.

    Article  PubMed  CAS  Google Scholar 

  • Loeb, J., 1923, Theory of regeneration based on mass action, J. Gen. Physiol. 5:5.

    Google Scholar 

  • Loeb, J., 1924, “Regeneration from a Physico-Chemical Viewpoint,” McGraw-Hill Book Co., Inc., New York.

    Book  Google Scholar 

  • Lovell, P.H., and White, J., 1986, Anatomical changes during adventitious root formation, in: “New Root Formation in Plants and Cuttings,” M.B. Jackson, ed., Martinus Nijhoff Pubs., Dordrecht, p. 111.

    Chapter  Google Scholar 

  • Lugovoy, M., 1937, The rooting and non-rooting of tree species in connection with the anatomical structure of lenticels, Ukrain. Akad. Sci., Inst. Bot. J., No. 23, p. 239.

    Google Scholar 

  • Lund, E.J., 1923, Electrical control of organic polarity in the egg of Fucus, Bot. Gaz. 76:76.

    Article  Google Scholar 

  • Lund, E.J., 1924, Experimental control of organic polarity by the electric current, V. The nature of the control of organic polarity by the electric current, J. Exp. Zool. 41:41.

    Google Scholar 

  • Lund, E.J., 1928, Relation between continuous bio-electric currents and cell respiration II., J. Exp. Zool. 51:51.

    Article  Google Scholar 

  • Lund, E.J., 1930, Internal distribution of the electric correlation potentials in the Douglas fir, Pub. Puget Sound Biol. Sta. 7:7.

    Google Scholar 

  • Lund, E.J., 1931, The unequal effect of O2 concentration on the velocity of oxydation on loci of different electric potential, and glutathione content, Protoplasma 13:13.

    Article  Google Scholar 

  • Lund, E.J., and Kenyon, W.A., 1927, Relation between continuous bio-electric currents and cell respiration I. Electric correlation potentials in growing root tips, J. Exp. Zool. 48:48.

    Article  Google Scholar 

  • Lunenfeld, M., ed., 1991, “1492, Discovery, Invasion, Encounter,” D.C. Heath and Co., Lexington.

    Google Scholar 

  • Mahlstede, J.P., and Watson, D.P., 1952, An anatomical study of adventitious root development in stems of Vaccinium corymbosum, Bot. Gaz. 113:113.

    Article  Google Scholar 

  • Majima, R., and Hoshino, T., 1925, Synthetische Versuche in der Indol-Gruppe, VI. Eine neue Synthese von ß-Indolyl-alkylaminen, Ber. Deutsch. Chem. Gesell. 58:58.

    Google Scholar 

  • Marston, M.E., 1955, The history of vegetative propagation, in: “Proc. 14th Int. Hortic. Cong.,” p. 1157.

    Google Scholar 

  • Massart, J., 1918, Sur la polarité des organes végétaux, Bull. Biol. Er. Belg. 51:51.

    Google Scholar 

  • Maurel, C., Barbier-Brygoo, H., Spena, A., Tempé, J., and Guern, J., 1991, Single rol genes from the Agrobacteriun rhizogenes TL-DNA alter some of the cellular responses to auxin in Nicotiana tabacum, Plant Physiol. 97:97.

    Article  Google Scholar 

  • Maurel, C., Brevet, J., Barbier-Brygoo, H., Guern, J., and Tempé, J., 1990, Auxin regulates the promoter of the root-inducing rolB gene of Agrobacterium rhizogenes in transgenic tobacco, Mol. Gen. Genet. 223:223.

    Article  Google Scholar 

  • Mayer, F., and Oppenheimer, T., 1916, Über Naphthyl-essigsäuren, Ber. Deutsh. Chem. Ges. 49:49.

    Google Scholar 

  • McCallum, W.B., 1905a, Regeneration in plants. L, Bot. Gaz. 40:97.

    Article  Google Scholar 

  • McCallum, W.B., 1905b, Regeneration in plants. IL, Bot. Gaz. 40:241.

    Article  Google Scholar 

  • Mitsuhashi, M., Shibaoka, H., and Shimokoriyama, M., 1969a, Portual: A root promoting substance in Portulaca leaves, Plant Cell Physiol. 10:715.

    CAS  Google Scholar 

  • Mitsuhashi, M., Shibaoka, H., and Shimokoriyama, M., 1969b, Morphological and physiological characterization of IAA-less-sensitive and IAA-sensitive phases in rooting of Azukia cuttings, Plant Cell Physiol. 10:867.

    CAS  Google Scholar 

  • Molnar, J.M., and LaCroix, L.J., 1972a, Studies of the rooting of cuttings of Hydrangea macrophylla: enzyme changes, Can. J. Bot. 30:315.

    Article  Google Scholar 

  • Molnar, J.M., and LaCroix, L.J., 1972b, Studies on the rooting of cuttings of Hydrangea macrophylla: DNA and protein changes, Can. J. Bot. 50:387.

    Article  CAS  Google Scholar 

  • Moorby, J., and Wareing, P.F., 1963, Ageing in woody plants, Ann. Bot. 27:27.

    Google Scholar 

  • Moore, T.C., 1979, “Biochemistry and Physiology of Plant Hormones,” Springer-Verlag, New York.

    Book  Google Scholar 

  • Morgan, T.H., 1901, “Regeneration,” Columbia Univ, Biol, Ser. VII, The MacMillan Co., New York.

    Google Scholar 

  • Morgan, T.H., 1903, The hypothesis of formative stuffs, Bull. Torrey Bot. Club 30:30.

    Article  Google Scholar 

  • Morgan, T.H., 1904, Polarity and regeneration in plants, Bull. Torrey Bot. Club 31:31.

    Article  Google Scholar 

  • Morgan, T.H., 1906, The physiology of regeneration, J. Exp. Zool. 3:3.

    Google Scholar 

  • Mudge, K.W., 1988, Effect of ethylene on rooting, in: “Adventitious Root Formation by Cuttings,” T.D. Davis, B.E. Haissig, and N. Sankhla, eds., Adv. in Plant Sci. Ser., vol. 2, Dioscorides Press, Portland, p. 150.

    Google Scholar 

  • Mullins, M.G., 1985, Regulation of adventitious root formation in microcuttings, Acta Hortic. 166:166.

    Google Scholar 

  • Nanda, K.K., Jain, M.K., and Malhotra, S., 1971. Effect of glucose and auxins in rooting etiolated stem segments of Populus nigra, Physiol. Plant. 24:387.

    Article  CAS  Google Scholar 

  • Nanda, K.K., Kumar, P., and Kochhar, V.K., 1974, Role of auxins, antiauxin and phenol in the production and differentiation of callus on stem cuttings of Populus robusta, N.Z. J. For. Sci. 4:4.

    Google Scholar 

  • Němec, B., 1930, Bakterielle Wuchsstoffe, Ber. Deutsch. Bot. Gesell. 48:48.

    Google Scholar 

  • Němec, B., 1934, Ernährung, Organogene und Regeneration, Vest. Kral. Ces. Spol. Nauk. Tr. 7:7.

    Google Scholar 

  • Newton, A.C., Muthoka, P.N., and Dick, McP., 1992, The influence of leaf area on the rooting physiology of leafy stem cuttings of Terminalia spinosa Engl., Trees 6:6.

    Article  Google Scholar 

  • Niedergang-Kamien, E., and Leopold, A.C., 1957, Inhibitors of polar auxin transport, Physiol. Plant. 10:10.

    Article  Google Scholar 

  • Niedergang-Kamien, E., and Skoog, F., 1956, Studies on polarity and auxin transport in plants, I. Modification of polarity and auxin transport by triiodobenzoic acid, Plant. Physiol. 9:9.

    Google Scholar 

  • Noll, F., 1900, Über den bestimmenden Einfluss von Wurzelkrümmungen auf Entstehung und Anordnung der Seiten wurzeln, Landw. Jahrb. 29:29.

    Google Scholar 

  • Nussey, A.N., 1948, “Some Effects of Boron on the Rooting of Softwood cuttings,” M.S. thesis, McGill Univ., Canada.

    Google Scholar 

  • Orlikowska, T., 1992, Influence of arginine on in vitro rooting of dwarf apple rootstock, Plant Cell Tissue Organ Cult. 31:31.

    Google Scholar 

  • Ott, J.J., 1763, “Dendrologie Europaæ Mediæ, oder: Saat, Pflanzung, und Gebrauch des Holzes, nach den Grundsätzen des Herrn Duhamel,” Heidegger und Compagnie, Zürich.

    Google Scholar 

  • Paton, D.M., Willing, R.R., Nicholls, W., and Pryor, L.D., 1970, Rooting of stem cuttings of Eucalyptus: A rooting inhibitor in adult tissue, Aust. J. Bot. 18:18.

    Article  Google Scholar 

  • Payen, A., and Persoz, J.F., 1833, Memoire sur la diastase, les principaux produits de ses réactions, et leurs applications aux arts industriels, Ann. Chim. Phys. 53:53.

    Google Scholar 

  • Platt, J.R., 1964, Strong inference, Science 146:146.

    Article  Google Scholar 

  • Pledge, H.T., 1947, “Science Since 1500, A Short History of Mathematics, Physics, Chemistry, Biology,” Min. Educ, Sci. Museum. Pliny (C. Plinius Secundus), ca. 77 A.D., “Natural History,” English trans. by T.E. Page, E. Capps, L.A. Post, W.H.D. Rouse, and E.H. Warmington, eds., Loeb Classical Lib., Harvard Univ. Press, Cambridge.

    Google Scholar 

  • Priestley, J.H., and Ewing, J., 1923, Physiological studies in plant anatomy, New Phytol. 22:22.

    Article  Google Scholar 

  • Priestley, J.H., 1926, Problems of vegetative propagation, J. Roy. Hortic. Soc. 51(1): 1.

    Google Scholar 

  • Priestley, J.H., and Swingle, C.F., 1929, “Vegetative Propagation from the Standpoint of Plant Anatomy,” U.S. Dept. Agric. Tech. Bull. No.151.

    Google Scholar 

  • Rasmussen, A., and Andersen, A.S., 1980, Water stress and root formation in pea cuttings, II. Effects of abscisic acid treatment of cuttings from stock plants grown under two levels of irradiance, Physiol. Plant. 48:48.

    Article  Google Scholar 

  • Raviv, M., Becker, D., and Sahali, Y., 1986, The chemical identification of root promoters extracted from avocado tissues, Plant Growth Regul. 4:4.

    Article  Google Scholar 

  • Reuveni, O., and Adato, I., 1974, Endogenous carbohydrates, root promoters, and root inhibitors in easy-and difficult-to-root date palm (Phoenix dactylifera L.) offshoots, J. Amer. Soc. Hortic. Sci. 99:99.

    Google Scholar 

  • Richards, M., 1964, Root formation on cuttings of Camellia reticulata var. ‘Capt. Rawes,’, Nature 204:601.

    Article  Google Scholar 

  • Ross, A.C., 1993, Overview of retinoid metabolism, Nutrition 123:2 suppl., p. 346.

    Google Scholar 

  • Ruge, U., 1957, Zur Wirkstoff-Analyse des Rhizokalin-Komplexes I, Zeit. Bot. 45:45.

    Google Scholar 

  • Ruge, U., 1960, Zur Wirkstoff-Analyse des Rhizokalin-Komplexes II, Zeit. Bot. 48:292.

    CAS  Google Scholar 

  • Sachs, J., 1880 and 1882, Stoff und Form der Pflanzenorgane, I. and IL, Arb. Bot. inst. Würzburg 2:452 and 689.

    Google Scholar 

  • Sachs, L, 1887, “Vorlesungen über Pflanzen-Physiologie,” Wilhelm Engelmann Verlag, Leipzig.

    Google Scholar 

  • Sagee, O., Raviv, M., Medina, Sh., Becker, D., and Cosse, A., 1992, Involvement of rooting factors and free IAA in the rootability of citrus species stem cuttings, Sci. Hortic. 51:51.

    Article  Google Scholar 

  • Salkowski, E., and Salkowski, H., 1880, Ueber die skatolbildende Substanz, Ber. Deutsch. Chem. Gesell. 13:13.

    Google Scholar 

  • Schaffalitzky de Muckadell, M., 1959, Investigations on aging of apical meristems in woody plants and its importance in silviculture, reprinted from Det forstlige Forsøgsvœsen i Danmark 25:309, Kandrup & Wunsch’s Bogtrykkeri, København.

    Google Scholar 

  • Schmidt, E., 1956, Anatomische Untersuchungen über das Vorkommen von Wurzelanlagen in verschiedenen Internodien von Pisum sativum, Flora 144:144.

    Google Scholar 

  • Schmülling, T., Schell, L, and Spena, A., 1989, Promoters of the rolA, B, and C genes of Agrobacterium rhizogenes are differentially regulated in transgenic plants, The Plant Cell 1:1.

    Google Scholar 

  • Seago, J.L., Jr., and Marsh, L.C., 1990, Origin and development of lateral roots in Typha glauca, Amer. J. Bot. 77:77.

    Article  Google Scholar 

  • Selby, C., Kennedy, S.J., and Harvey, B.M.R., 1992, Adventitious root formation in hypocotyl cuttings of Picea sitchensis (Bong.) Carr. — the influence of plant growth regulators, New Phytol. 120:120.

    Article  Google Scholar 

  • Shibaoka, H., 1971, Effects of indoleacetic, ρ-chlorophenoxyisobutyric and 2,4,6-trichlorophenoxyacetic acids on three phases of rooting in Azukia cuttings, Plant and Cell Physiol. 12:12.

    Google Scholar 

  • Sitte, P., 1992, A modern concept of the “cell theory,” A perspective on competing hypotheses of structure, Int. J. Plant Sci. 153(3):S1.

    Article  Google Scholar 

  • Skoog, F., and Miller, CO., 1957, Chemical regulation of growth and organ formation in plant tissues cultured in vitro, in: “Biol. Action of Growth Sub. 11th Symp. Soc. Exp. Biol.,” Cambridge Univ. Press, Cambridge, p. 118.

    Google Scholar 

  • Skoog, F., Strong, F.M., and Miller, CO., 1965, Cytokinins, Science 148:148.

    Article  Google Scholar 

  • Smith, E.P., 1928, A comparative study of the stem structure of the genus Clematis with special reference to anatomical changes induced by vegetative propagation, Trans. Roy. Soc. Edinburgh 55:55.

    Article  Google Scholar 

  • Snow, A.G., Jr., 1939, “Clonal Variation in Rooting Response of Red Maple Cuttings,” USDA Forest Service, Northeastern For. Exp. Sta. Tech. Note. No. 29.

    Google Scholar 

  • Spiegel, P., 1955, Some internal factors affecting rooting of cuttings, in: “Rept. 14th Int. Hortic. Cong.,” vol. 1, p. 239.

    CAS  Google Scholar 

  • Stebbins, G.L., 1992, Comparative aspects of plant morphogenesis: A cellular, molecular, and evolutionary approach, Amer. J. Bot. 79:79.

    Article  Google Scholar 

  • Stoutemyer, V.T., 1937, “Regeneration in Various Types of Apple Wood,” Res. Bull. Iowa Agric. Exp. Sta., No. 220, p. 308.

    Google Scholar 

  • Strydom, D.K., and Hartmann, H.T., 1960, Absorption, distribution, and destruction of indoleacetic acid in plant stem cuttings, Plant Physiol. 35:35.

    Article  Google Scholar 

  • Stuart, N.W., 1938, Nitrogen and carbohydrate of kidney bean cuttings as affected by treatment with indoleacetic acid, Bot. Gaz. 100:100.

    Article  Google Scholar 

  • Swingle, C.F., 1927, Burrknot formations in relation to the vascular system of the apple stem, J. Agric. Res. 34:34.

    Google Scholar 

  • Taylor, G.G., and Odom, R.E., 1970, Some biochemical compounds associated with rooting of Carya illinoensis stem cuttings, J. Amer. Soc. Hortic. Sci. 95:95.

    Google Scholar 

  • Theophrastus, ca. 300 B.C., “Enquiry into Plants,” English trans. by A. Hort, G.P. Putnam’s Sons, New York (1916).

    Google Scholar 

  • Thimann, K.V., and Koepfli, J.B., 1935, Identity of the growth-promoting and root-forming substances of plants, Nature 135:135.

    Article  Google Scholar 

  • Thimann, K.V., and Went, F.W., 1934, On the chemical nature of the rootforming [sic] hormone, Proc. Kon. Akad. Wetensch. Amst. 37:37.

    Google Scholar 

  • Trécul, A., 1846, Sur l’origine des racines, Ann. Sci. Nat. Bot. 6:6.

    Google Scholar 

  • Trewavas, A., 1981, How do plant growth substances work?, Plant Cell and Environ. 4:4.

    Google Scholar 

  • Tripepi, R.R., Heuser, C.W., and Shannon, J.C., 1983, Incorporation of tritiated thymidine and uridine into adventitious-root initial cells of Vigna radiata, J. Amer. Soc. Hortic. Sci. 108:108.

    Google Scholar 

  • Trippi, V.S., 1963, Studies on ontogeny and senility in plants, IV. Activity of some enzymes at different stages of ontogeny and in clones from juvenile and adult zones of Robinia pseudoacacia, Phyton 20:160, XI-1963.

    Google Scholar 

  • van der Lek, H.A.A., 1924, Over de wortelvorming van houtige stekken, Meded. Landbouwhoogeschool Wageningen, 28:1.

    Google Scholar 

  • van der Lek, H.A.A., 1934, Over den invloed der knoppen op de wortelvorming der stekken, Meded. Landbouwhoogeschool Wageningen 38(2): 1.

    Google Scholar 

  • van Overbeek, J, and Gregory, L.E., 1945, A physiological separation of two factors necessary for the formation of roots on cuttings, Amer. J. Bot. 32:32.

    Google Scholar 

  • van Overbeek, J., Gordon, S.A., and Gregory, L.E., 1946, An analysis of the function of the leaf in the process of root formation in cuttings, Amer. J. Bot. 33:33.

    Google Scholar 

  • van Staden, J., and Harty, A.R., 1988, Cytokinins and adventitious root formation, in: “Adventitious Root Formation by Cuttings,” T.D. Davis, B.E. Haissig, and N. Sankhla, eds., Adv. in Plant Sci. Ser., vol. 2, Dioscorides Press, Portland, p. 185.

    Google Scholar 

  • van Tieghem, P., and Douliot, H., 1888, Recherches comparatives sur l’origine des membres endogènes dans les plantes vasculaires, Ann. Sci. Nat. Bot. 8:8.

    Google Scholar 

  • Verbeke, J.A., 1992, Developmental principles of cell and tissue differentiation: Cell-cell communication and induction, Int. J. Plant Sci. 153(3):S86.

    Article  Google Scholar 

  • Vieitez, E., Vazquez, A., and Areses, M.L., 1966a, Rooting problems of chestnut cuttings, Cong. Colloq. Univ. Liège 38:115.

    Google Scholar 

  • Vieitez, E., Gesto, M.D.V., Mato, M.C., Vazquez, A., and Carnicer, A., 1966b, p-hydroxzybenzoic acid, a growth regulator, isolated from woody cuttings of Ribes rubrum, Physiol. Plant. 19:294.

    Article  CAS  Google Scholar 

  • Vieitez, J., Kingston, D.G.I., Ballester, A., and Vieitez, E., 1987, Identification of two compounds correlated with lack of rooting capacity of chestnut cuttings, Tree Physiol. 3:241.

    Article  Google Scholar 

  • Vöchting, H., 1878 and 1884, “Über Organbildung im Pflanzenreich, Physiologische Untersuchungen über Wachsthumsursachen und Lebenseinheiten,” I., Max Cohen & Sohn (FR Cohen) Verlag, Bonn; II., Emil Strauss Verlag, Bonn.

    Google Scholar 

  • Vöchting, H., 1892, “Über Transplantation am Pflanzenkörper,” Tübingen.

    Google Scholar 

  • Vöchting, H., 1906, Über Regeneration und Polarität bei höhereren Pflanzen, Bot. Zeit. 64:64.

    Google Scholar 

  • Warmke, H.E., and Warmke, G.L., 1950, The role of auxin in the differentiation of root and shoot primordia from rooting cuttings of Taraxacum and Cichorium, Amer. J. Bot. 37:272–280.

    Article  CAS  Google Scholar 

  • Went, F.A.F.C., 1930, Über wurzelbildende Substanzen bei Bryophyllum calycinum Salisb., Zeit. Bot. 23:23.

    Google Scholar 

  • Went, F.W., 1928, Wuchsstoff und Wachstum, Rec. Trav. Bot. Néerl. 25:25.

    Google Scholar 

  • Went, F.W., 1929, On a substance causing root formation, Proc. Kon. Akad. Wetensch. Amst. 32:32.

    Google Scholar 

  • Went, F.W., 1932, Eine botanische Polaritätstheorie, Jahrb. Wiss. Bot. 76:76.

    Google Scholar 

  • Went, F.W., 1934a, A test method for rhizocaline, the root-forming substance, Proc. Kon. Akad. Wetensch. Amst. 37:445.

    CAS  Google Scholar 

  • Went, F.W., 1934b, On the pea test method for auxin, the plant growth hormone, Proc. Kon. Akad. Wetensch. Amst. 37:547.

    CAS  Google Scholar 

  • Went, F.W., 1935, Hormones involved in rootformation [sic], The phenomenon of inhibition, in: “Proc. 6th Int. Bot. Cong.,” vol. 2, p. 267.

    Google Scholar 

  • Went, F.W., 1938, Specific factors other than auxin affecting growth and root formation, Plant Physiol. 13:13.

    Article  Google Scholar 

  • Went, F.W., 1939, The dual effect of auxin on root formation, Amer, J. Bot. 26:26.

    Google Scholar 

  • Went, F.W., 1974, Reflections and speculations, Annu. Rev. Plant Physiol. 25:25.

    Article  Google Scholar 

  • Went, F.W., and Thimann, K.V., 1937, “Phytohormones,” MacMillan Co., New York.

    Google Scholar 

  • Wildon, D.C., Thain, J.F., Minchin, P.E.H., Gubb, I.R., Reilly, A.J., Skipper, Y.D., Doherty, H.M., O’Connell, P.J., and Bowles, D.J., 1992, Electrical signalling and systemic proteinase inhibitor induction in the wounded plant, Nature 360:360.

    Article  Google Scholar 

  • Wilson, P.J., and van Staden, J., 1990, Rhizocaline, rooting co-factors, and the concept of promoters and inhibitors of adventitious rooting — a review, Ann. Bot. 66:66.

    Google Scholar 

  • Winkler, H., 1900, Ueber Polarität, Regeneration und Heteromorphose bei Bryopsis, Jahrb. Wiss. Bot. 36:36.

    Google Scholar 

  • Zimmerman, P.W., 1930, Oxygen requirements for root growth of cuttings in water, Amer. J. Bot. 17:17.

    Article  Google Scholar 

  • Zimmerman, P.W., and Hitchcock, A.E., 1929, Vegetative propagation of holly, Amer. J. Bot. 16:16.

    Article  Google Scholar 

  • Zimmerman, P.W., and Hitchcock, A.E., 1933, Initiation and stimulation of adventitious roots caused by unsaturated hydrocarbon gases, Contr. Boyce Thomp. Inst. 5:5.

    Google Scholar 

  • Zimmerman, P.W., and Hitchcock, A.E., 1946, The relation between age of stem tissue and the capacity to form roots, J. Gerontol. 1:1.

    Google Scholar 

  • Zimmerman, P.W., and Wilcoxon, F. 1935, Several chemical growth substances which cause initiation of roots and other responses in plants, Contrib. Boyce Thomp. Inst. 7:209.

    CAS  Google Scholar 

  • Zimmerman, P.W., Crocker, W., and Hitchcock, A.E., 1933, Initiation and stimulation of roots from exposure of plants to carbon monoxide gas, Contr. Boyce Thomp. Inst. 7:7.

    Google Scholar 

  • Zimmerman, R., 1963, Rooting cofactors in some southern pines, in: “Proc. Int. Plant Prop. Soc,” 13:71.

    Google Scholar 

  • Zimmerman, R.H., ed., 1976, “Symposium on Juvenility in Woody Perennials,” Acta Hortic, No. 56.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media New York

About this chapter

Cite this chapter

Haissig, B.E., Davis, T.D. (1994). A Historical Evaluation of Adventitious Rooting Research to 1993. In: Davis, T.D., Haissig, B.E. (eds) Biology of Adventitious Root Formation. Basic Life Sciences, vol 62. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-9492-2_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-9492-2_19

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-9494-6

  • Online ISBN: 978-1-4757-9492-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics